add UnsortedSegmentSum fission pass
This commit is contained in:
parent
874972caf8
commit
b8d7f6d77f
|
@ -26,6 +26,7 @@
|
|||
#include "backend/optimizer/ascend/ir_fission/reduce_min_fission.h"
|
||||
#include "backend/optimizer/ascend/ir_fusion/fused_batch_norm_fusion.h"
|
||||
#include "backend/optimizer/ascend/ir_fission/layer_norm_grad_split.h"
|
||||
#include "backend/optimizer/ascend/ir_fission/unsorted_segment_sum_fission.h"
|
||||
#include "backend/optimizer/pass/communication_op_fusion.h"
|
||||
#include "backend/optimizer/ascend/ir_fusion/square_sum_fusion.h"
|
||||
#include "backend/optimizer/ascend/ir_fusion/clip_by_norm_no_div_square_sum_fusion.h"
|
||||
|
@ -172,6 +173,7 @@ void AddAscendIRFusionPass(PassManager *ir_fusion_pm) {
|
|||
ir_fusion_pm->AddPass(std::make_shared<PackFission>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<ConcatFission>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<ReduceMinFission>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<UnsortSegmentSumFission>());
|
||||
}
|
||||
} // namespace
|
||||
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/optimizer/ascend/ir_fission/unsorted_segment_sum_fission.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "ir/primitive.h"
|
||||
#include "utils/utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
CNodePtr CreatePadding(const FuncGraphPtr &graph, const CNodePtr &origin_node, const size_t &pad_dim_size) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(origin_node);
|
||||
std::vector<AnfNodePtr> padding_inputs = {NewValueNode(std::make_shared<Primitive>(kPaddingOpName)),
|
||||
origin_node->input(1)};
|
||||
auto padding = graph->NewCNode(padding_inputs);
|
||||
MS_EXCEPTION_IF_NULL(padding);
|
||||
padding->set_scope(origin_node->scope());
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(origin_node, 0);
|
||||
shape[shape.size() - 1] = pad_dim_size;
|
||||
AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetPrevNodeOutputInferDataType(origin_node, 0)}, {shape},
|
||||
padding.get());
|
||||
AnfAlgo::SetNodeAttr(kAttrPadDimSize, MakeValue(SizeToInt(pad_dim_size)), padding);
|
||||
return padding;
|
||||
}
|
||||
|
||||
CNodePtr CreateUnsortedSegmentSum(const FuncGraphPtr &graph, const CNodePtr &origin_node, const CNodePtr &padding,
|
||||
const size_t &pad_dim_size) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(origin_node);
|
||||
MS_EXCEPTION_IF_NULL(padding);
|
||||
std::vector<AnfNodePtr> unsorted_segment_sum8_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(prim::kPrimUnsortedSegmentSum->name())), padding, origin_node->input(2)};
|
||||
auto unsorted_segment_sum = graph->NewCNode(unsorted_segment_sum8_inputs);
|
||||
MS_EXCEPTION_IF_NULL(unsorted_segment_sum);
|
||||
unsorted_segment_sum->set_scope(origin_node->scope());
|
||||
auto shape = AnfAlgo::GetOutputInferShape(origin_node, 0);
|
||||
shape[shape.size() - 1] = pad_dim_size;
|
||||
AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(origin_node, 0)}, {shape},
|
||||
unsorted_segment_sum.get());
|
||||
AnfAlgo::SetNodeAttr(kAttrNumSegments, MakeValue(SizeToInt(shape[0])), unsorted_segment_sum);
|
||||
return unsorted_segment_sum;
|
||||
}
|
||||
|
||||
CNodePtr CreateSlice(const FuncGraphPtr &graph, const CNodePtr &unsort_segment_sum,
|
||||
const CNodePtr &unsorted_segment_sum8) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(unsort_segment_sum);
|
||||
MS_EXCEPTION_IF_NULL(unsorted_segment_sum8);
|
||||
std::vector<AnfNodePtr> slice_inputs = {NewValueNode(std::make_shared<Primitive>(kSliceOpName)),
|
||||
unsorted_segment_sum8};
|
||||
auto slice = graph->NewCNode(slice_inputs);
|
||||
MS_EXCEPTION_IF_NULL(slice);
|
||||
slice->set_scope(unsort_segment_sum->scope());
|
||||
slice->set_abstract(unsort_segment_sum->abstract());
|
||||
auto unsort_segment_sum_shape = AnfAlgo::GetOutputInferShape(unsort_segment_sum, 0);
|
||||
std::vector<size_t> offsets(unsort_segment_sum_shape.size(), 0);
|
||||
AnfAlgo::SetNodeAttr(kAttrBegin, MakeValue(Convert2Int(offsets)), slice);
|
||||
AnfAlgo::SetNodeAttr(kAttrSize, MakeValue(Convert2Int(unsort_segment_sum_shape)), slice);
|
||||
return slice;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef UnsortSegmentSumFission::DefinePattern() const {
|
||||
VarPtr Xs = std::make_shared<SeqVar>();
|
||||
VectorRef pattern({prim::kPrimUnsortedSegmentSum, Xs});
|
||||
return pattern;
|
||||
}
|
||||
|
||||
const AnfNodePtr UnsortSegmentSumFission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
|
||||
const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto origin_node = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(origin_node);
|
||||
if (origin_node->size() != kUnsortedSegmentSumInputNum + 1) {
|
||||
MS_LOG(INFO) << "UnsortedSegmentSum has wrong inputs num, not equal " << kUnsortedSegmentSumInputNum
|
||||
<< ". CNode= " << origin_node->DebugString();
|
||||
return nullptr;
|
||||
}
|
||||
auto input0_shape = AnfAlgo::GetPrevNodeOutputInferShape(origin_node, 0);
|
||||
if (input0_shape[input0_shape.size() - 1] != 1) {
|
||||
MS_LOG(INFO) << "UnsortedSegmentSum is not need fission. The last value of input0's shape is "
|
||||
<< input0_shape[input0_shape.size() - 1];
|
||||
return nullptr;
|
||||
}
|
||||
size_t pad_dim_size;
|
||||
auto input_dtype = AnfAlgo::GetPrevNodeOutputInferDataType(origin_node, 0);
|
||||
if (input_dtype == kNumberTypeFloat32) {
|
||||
pad_dim_size = 8;
|
||||
} else if (input_dtype == kNumberTypeFloat16) {
|
||||
pad_dim_size = 16;
|
||||
} else {
|
||||
MS_LOG(INFO) << "UnsortedSegmentSum data type not in (float21, float16), no need change";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto padding = CreatePadding(graph, origin_node, pad_dim_size);
|
||||
auto unsorted_segment_sum8 = CreateUnsortedSegmentSum(graph, origin_node, padding, pad_dim_size);
|
||||
return CreateSlice(graph, origin_node, unsorted_segment_sum8);
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/optimizer/common/optimizer.h"
|
||||
#include "backend/optimizer/common/helper.h"
|
||||
#include "backend/optimizer/ascend/ascend_helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class UnsortSegmentSumFission : public PatternProcessPass {
|
||||
public:
|
||||
explicit UnsortSegmentSumFission(bool multigraph = true)
|
||||
: PatternProcessPass("unsorted_segment_sum_fission", multigraph) {}
|
||||
~UnsortSegmentSumFission() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
|
@ -98,6 +98,7 @@ constexpr size_t kTopkInputNum = 3;
|
|||
constexpr size_t kLarsV2InputNum = 5;
|
||||
constexpr size_t kFusedMulApplyMomentumOutputNum = 2;
|
||||
constexpr size_t kSplitInputNum = 2;
|
||||
constexpr size_t kUnsortedSegmentSumInputNum = 2;
|
||||
|
||||
enum FusedBatchNormInput {
|
||||
kX = 1,
|
||||
|
|
|
@ -182,6 +182,7 @@ constexpr auto kPushOpName = "Push";
|
|||
constexpr auto kPullOpName = "Pull";
|
||||
constexpr auto kEmbeddingLookupOpName = "EmbeddingLookup";
|
||||
constexpr auto kEmbeddingLookupProxyOpName = "EmbeddingLookupProxy";
|
||||
constexpr auto kPaddingOpName = "Padding";
|
||||
|
||||
// attr key name
|
||||
constexpr auto kAttrInputNames = "input_names";
|
||||
|
@ -253,6 +254,10 @@ constexpr auto kAttrInputNums = "inputNums";
|
|||
constexpr auto kAttrT = "T";
|
||||
constexpr auto kAttrNum = "num";
|
||||
constexpr auto kAttrRankSize = "rank_size";
|
||||
constexpr auto kAttrPadDimSize = "pad_dim_size";
|
||||
constexpr auto kAttrNumSegments = "num_segments";
|
||||
constexpr auto kAttrBegin = "begin";
|
||||
constexpr auto kAttrSize = "size";
|
||||
|
||||
// attr value
|
||||
constexpr auto kValueTargetSwitch = "target_switch";
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(save_graphs=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||
self.num_segments = 3
|
||||
|
||||
def construct(self, x, segment_ids):
|
||||
x = self.unsorted_segment_sum(x, segment_ids, self.num_segments)
|
||||
return x
|
||||
|
||||
|
||||
def test_net():
|
||||
input_x = np.random.randn(3, 39, 1).astype(np.float32)
|
||||
segment_ids = Tensor([0, 1, 2], mindspore.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(input_x), segment_ids)
|
||||
print("result", output.asnumpy())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_net()
|
|
@ -0,0 +1,68 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/optimizer/ascend/ir_fission/unsorted_segment_sum_fission.h"
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWUnsortedSegmentSumFission : public BackendCommon {
|
||||
public:
|
||||
TestHWUnsortedSegmentSumFission() : get_py_fun_("gtest_input.pre_activate.unsorted_segment_sum_fission", true) {}
|
||||
~TestHWUnsortedSegmentSumFission() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWUnsortedSegmentSumFission, test_fission) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "before1");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp_x{16, 1};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||
AbstractBasePtrList args_spec_list{x_abstract, x_abstract};
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::UnsortSegmentSumFission>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "after1");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
|
||||
TEST_F(TestHWUnsortedSegmentSumFission, test_no_fission) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "before2");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp_x{16, 2};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||
AbstractBasePtrList args_spec_list{x_abstract, x_abstract};
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::UnsortSegmentSumFission>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "after2");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops import Primitive
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||
num_segments = 4
|
||||
padding = Primitive('Padding')
|
||||
op_slice = Primitive('Slice')
|
||||
op_unsorted_segment_sum = Primitive('UnsortedSegmentSum')
|
||||
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
|
||||
def test_unsorted_segment_sum_fission(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before1(input0, input1):
|
||||
x = unsorted_segment_sum(input0, input1, num_segments)
|
||||
return x
|
||||
|
||||
@fns
|
||||
def after1(input0, input1):
|
||||
x = padding(input0)
|
||||
x = op_unsorted_segment_sum(x, input1)
|
||||
x = op_slice(x)
|
||||
return make_tuple(x)
|
||||
|
||||
@fns
|
||||
def before2(input0, input1):
|
||||
x = unsorted_segment_sum(input0, input1, num_segments)
|
||||
return x
|
||||
|
||||
@fns
|
||||
def after2(input0, input1):
|
||||
x = op_unsorted_segment_sum(input0, input1)
|
||||
return make_tuple(x)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue