!45601 [MSLITE] Add tile mapper for ascend.

Merge pull request !45601 from wangshaocong/bugfix
This commit is contained in:
i-robot 2022-11-18 03:31:14 +00:00 committed by Gitee
commit b634724bc7
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
4 changed files with 109 additions and 12 deletions

View File

@ -0,0 +1,70 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/adapter/acl/mapper/tile_fusion_mapper.h"
#include <memory>
#include <vector>
#include <algorithm>
#include "tools/converter/adapter/acl/mapper/primitive_mapper_register.h"
#include "tools/converter/adapter/acl/common/utils.h"
#include "ops/op_utils.h"
#include "ops/tile.h"
#include "nnacl/op_base.h"
namespace mindspore {
namespace lite {
namespace {
constexpr auto kNameTileInputNum = 3;
} // namespace
STATUS TileFusionMapper::Mapper(const CNodePtr &cnode) {
MS_CHECK_TRUE_RET(cnode != nullptr, RET_ERROR);
if (cnode->size() != kNameTileInputNum) {
MS_LOG(ERROR) << "The input size of tile must be " << kNameTileInputNum
<< ", while the real size is: " << cnode->size();
return RET_ERROR;
}
auto repeats_input = cnode->input(kNameTileInputNum - 1);
MS_CHECK_TRUE_RET(repeats_input != nullptr, RET_ERROR);
if (!utils::isa<ParameterPtr>(repeats_input)) {
MS_LOG(ERROR) << "The repeats node is not parameter.";
return RET_ERROR;
}
ParameterPtr repeats_param = repeats_input->cast<ParameterPtr>();
MS_CHECK_TRUE_RET(repeats_param != nullptr, RET_ERROR);
auto data = acl::GetIntParameterData(repeats_param);
std::vector<int64_t> multiples;
std::transform(data.begin(), data.end(), std::back_inserter(multiples),
[](int32_t x) -> int64_t { return static_cast<int64_t>(x); });
ValueNodePtr value_node = NewValueNode<std::vector<int64_t>>(multiples);
MS_CHECK_TRUE_RET(value_node != nullptr, RET_ERROR);
std::vector<int64_t> shape_vec_shape = {static_cast<int64_t>(multiples.size())};
auto abstract = std::make_shared<abstract::AbstractTensor>(kInt64, shape_vec_shape);
value_node->set_abstract(abstract);
cnode->set_input(kNameTileInputNum - 1, value_node);
ops::Tile tile;
auto dst_prim = tile.GetPrim();
if (MoveAttrMap(cnode, dst_prim) != RET_OK) {
MS_LOG(ERROR) << "TileFusion mapper failed.";
return RET_ERROR;
}
return RET_OK;
}
REGISTER_PRIMITIVE_MAPPER(kNameTileFusion, TileFusionMapper)
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_ADAPTER_ACL_MAPPER_TILE_FUSION_MAPPER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_ADAPTER_ACL_MAPPER_TILE_FUSION_MAPPER_H_
#include "tools/converter/adapter/acl/mapper/primitive_mapper.h"
#include "ops/fusion/tile_fusion.h"
namespace mindspore {
namespace lite {
using mindspore::ops::kNameTileFusion;
class TileFusionMapper : public PrimitiveMapper {
public:
TileFusionMapper() : PrimitiveMapper(kNameTileFusion) {}
~TileFusionMapper() override = default;
STATUS Mapper(const CNodePtr &cnode) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_ADAPTER_ACL_MAPPER_TILE_FUSION_MAPPER_H_

View File

@ -165,6 +165,8 @@ PrimitiveCPtr OnnxConvParser::Parse(const onnx::GraphProto &onnx_graph, const on
if (status == RET_OK) {
prim->set_in_channel(channel_in);
prim->set_out_channel(channel_out);
bool is_depth_wise = group == channel_in && channel_in == channel_out;
(void)prim_c->AddAttr(ops::kIsDepthWise, MakeValue<bool>(is_depth_wise));
} else if (status != RET_NO_CHANGE) {
return nullptr;
}
@ -175,10 +177,6 @@ PrimitiveCPtr OnnxConvParser::Parse(const onnx::GraphProto &onnx_graph, const on
prim->set_activation_type(mindspore::ActivationType::RELU);
}
if (group == channel_in && channel_in == channel_out) {
(void)prim_c->AddAttr(ops::kIsDepthWise, MakeValue<bool>(true));
}
return prim->GetPrim();
}

View File

@ -25,14 +25,6 @@ PrimitiveCPtr PytorchCumSumParser::Parse(const torch::jit::Node *torch_node, std
MS_ASSERT(torch_node != nullptr && input_indices != nullptr);
auto prim = std::make_unique<ops::CumSum>();
MS_CHECK_TRUE_RET(prim != nullptr, nullptr);
input_indices->push_back(0);
if (torch_node->inputs().size() > SECOND_INPUT) {
auto dim = PytorchNodeParser::GetValueFromConstNode<int64_t>(torch_node->input(SECOND_INPUT));
prim->set_axis(dim);
}
return prim->GetPrim();
}