modify the files to fix the webpage
This commit is contained in:
parent
fa64c2e301
commit
aff3805971
|
@ -22,7 +22,7 @@ mindspore.nn.AdaSumByDeltaWeightWrapCell
|
||||||
使用本接口时,训练的卡的数量必须是2的幂,并且至少需要16张卡。目前,使用本接口时不支持优化器并行和流水线并行。
|
使用本接口时,训练的卡的数量必须是2的幂,并且至少需要16张卡。目前,使用本接口时不支持优化器并行和流水线并行。
|
||||||
|
|
||||||
参数:
|
参数:
|
||||||
- **optimizer** (nn.optimizer) - 必须是单输入的优化器。
|
- **optimizer** (Union[Cell]) - 必须是单输入的优化器。
|
||||||
|
|
||||||
输入:
|
输入:
|
||||||
- **grads** (tuple[Tensor]) - `params` 的梯度,形状(shape)与 `params` 相同,与所传优化器的输入一致。
|
- **grads** (tuple[Tensor]) - `params` 的梯度,形状(shape)与 `params` 相同,与所传优化器的输入一致。
|
||||||
|
|
|
@ -20,9 +20,9 @@ mindspore.nn.GELU
|
||||||
参数:
|
参数:
|
||||||
- **approximate** (bool) - 是否启用approximation,默认值:True。如果approximate的值为True,则高斯误差线性激活函数为:
|
- **approximate** (bool) - 是否启用approximation,默认值:True。如果approximate的值为True,则高斯误差线性激活函数为:
|
||||||
|
|
||||||
:math:`0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))` ,
|
:math:`0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))` ,
|
||||||
|
|
||||||
否则为: :math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`, where P(X) ~ N(0, 1) 。
|
否则为: :math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))`,其中P(X) ~ N(0, 1) 。
|
||||||
|
|
||||||
输入:
|
输入:
|
||||||
- **x** (Tensor) - 用于计算GELU的Tensor。数据类型为float16或float32。shape是 :math:`(N,*)` , :math:`*` 表示任意的附加维度数。
|
- **x** (Tensor) - 用于计算GELU的Tensor。数据类型为float16或float32。shape是 :math:`(N,*)` , :math:`*` 表示任意的附加维度数。
|
||||||
|
|
|
@ -8,7 +8,7 @@ mindspore.nn.WithEvalCell
|
||||||
参数:
|
参数:
|
||||||
- **network** (Cell) - 前向网络。
|
- **network** (Cell) - 前向网络。
|
||||||
- **loss_fn** (Cell) - 损失函数。
|
- **loss_fn** (Cell) - 损失函数。
|
||||||
- **add_cast_fp32** (bool):是否将数据类型调整为float32。默认值:False。
|
- **add_cast_fp32** (bool) - 是否将数据类型调整为float32。默认值:False。
|
||||||
|
|
||||||
输入:
|
输入:
|
||||||
- **data** (Tensor) - shape为 :math:`(N, \ldots)` 的Tensor。
|
- **data** (Tensor) - shape为 :math:`(N, \ldots)` 的Tensor。
|
||||||
|
|
|
@ -513,7 +513,7 @@ Parameter Operation Functions
|
||||||
mindspore.ops.scatter_update
|
mindspore.ops.scatter_update
|
||||||
|
|
||||||
Differential Functions
|
Differential Functions
|
||||||
----------------
|
----------------------
|
||||||
|
|
||||||
.. msplatformautosummary::
|
.. msplatformautosummary::
|
||||||
:toctree: ops
|
:toctree: ops
|
||||||
|
|
|
@ -947,7 +947,8 @@ class Cell(Cell_):
|
||||||
"""
|
"""
|
||||||
Compile and run Cell, the input must be consistent with the input defined in construct.
|
Compile and run Cell, the input must be consistent with the input defined in construct.
|
||||||
|
|
||||||
Note: It is not recommended to call directly.
|
Note:
|
||||||
|
It is not recommended to call directly.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
inputs (tuple): Inputs of the Cell object.
|
inputs (tuple): Inputs of the Cell object.
|
||||||
|
@ -1080,7 +1081,8 @@ class Cell(Cell_):
|
||||||
"""
|
"""
|
||||||
Defines the computation to be performed. This method must be overridden by all subclasses.
|
Defines the computation to be performed. This method must be overridden by all subclasses.
|
||||||
|
|
||||||
Note: It is not supported currently that inputs contain both tuple and non-tuple types at same time.
|
Note:
|
||||||
|
It is not supported currently that inputs contain both tuple and non-tuple types at same time.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
inputs (tuple): Tuple of variable parameters.
|
inputs (tuple): Tuple of variable parameters.
|
||||||
|
|
Loading…
Reference in New Issue