add deeplabv3 and ssd_vgg16 310 inference

modified:   model_zoo/official/cv/deeplabv3/README.md
	modified:   model_zoo/official/cv/deeplabv3/README_CN.md
This commit is contained in:
unknown 2021-03-09 17:57:41 +08:00
parent e2ad028194
commit afb60d37fd
14 changed files with 96 additions and 41 deletions

View File

@ -482,6 +482,8 @@ Note: There OS is output stride, and MS is multiscale.
## [Export MindIR](#contents)
Currently, batchsize can only set to 1.
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```

View File

@ -508,7 +508,6 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
### 用法
在执行推理前air文件必须在910上通过export.py文件导出。
目前仅可处理batch_Size为1。
```shell

View File

@ -1,14 +1,14 @@
cmake_minimum_required(VERSION 3.14.1)
project(MindSporeCxxTestcase[CXX])
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT}/../inc)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main main.cc utils.cc)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)

View File

@ -13,6 +13,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ ! -d out ]; then
mkdir out
fi
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
cd out
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make

View File

@ -0,0 +1 @@
ConvBatchnormFusionPass:off

View File

@ -52,6 +52,7 @@ using mindspore::dataset::vision::Decode;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_string(fusion_switch_path, ".", "fusion switch path");
DEFINE_int32(device_id, 0, "device id");
int PadImage(const MSTensor &input, MSTensor *output) {
@ -122,11 +123,17 @@ int main(int argc, char **argv) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
if (RealPath(FLAGS_fusion_switch_path).empty()) {
std::cout << "Invalid fusion switch path" << std::endl;
return 1;
}
GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
auto model_context = std::make_shared<mindspore::Context>();
if (!FLAGS_fusion_switch_path.empty()) {
ModelContext::SetFusionSwitchConfigPath(model_context, FLAGS_fusion_switch_path);
}
Model model(GraphCell(graph), model_context);
Status ret = model.Build();
if (ret != kSuccess) {

View File

@ -75,6 +75,8 @@ def eval_batch_scales(args, eval_net, img_lst, scales,
def acc_cal():
args = parse_args()
args.image_mean = [103.53, 116.28, 123.675]
args.image_std = [57.375, 57.120, 58.395]
# data list
with open(args.data_lst) as f:
img_lst = f.readlines()

View File

@ -60,10 +60,7 @@ fi
function compile_app()
{
cd ../ascend310_infer/src
if [ -f "Makefile" ]; then
make clean
fi
cd ../ascend310_infer
bash build.sh &> build.log
}
@ -78,7 +75,7 @@ function infer()
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --fusion_switch_path=../ascend310_infer/fusion_switch.cfg &> infer.log
}
function cal_acc()

View File

@ -410,10 +410,11 @@ Current batch_Size can only be set to 1. The precision calculation process needs
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
```
`DEVICE_ID` is optional, default value is 0.
- `DVPP` is mandatory, and must choose from ["DVPP", "CPU"], it's case-insensitive. Note that the image shape of ssd_vgg16 inference is [300, 300], The DVPP hardware restricts width 16-alignment and height even-alignment. Therefore, the network needs to use the CPU operator to process images.
- `DEVICE_ID` is optional, default value is 0.
### result

View File

@ -29,7 +29,7 @@
#include "include/api/serialization.h"
#include "include/minddata/dataset/include/vision_ascend.h"
#include "include/minddata/dataset/include/execute.h"
#include "include/minddata/dataset/include/vision.h"
#include "inc/utils.h"
using mindspore::GlobalContext;
@ -42,13 +42,20 @@ using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::dataset::TensorTransform;
using mindspore::dataset::vision::DvppDecodeResizeJpeg;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::Decode;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
DEFINE_string(aipp_path, "./aipp.cfg", "aipp path");
DEFINE_string(cpu_dvpp, "DVPP", "cpu or dvpp process");
DEFINE_int32(image_height, 640, "image height");
DEFINE_int32(image_width, 640, "image width");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
@ -56,17 +63,18 @@ int main(int argc, char **argv) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
if (RealPath(FLAGS_aipp_path).empty()) {
std::cout << "Invalid aipp path" << std::endl;
return 1;
}
GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
auto model_context = std::make_shared<mindspore::ModelContext>();
if (!FLAGS_aipp_path.empty()) {
ModelContext::SetInsertOpConfigPath(model_context, FLAGS_aipp_path);
if (FLAGS_cpu_dvpp == "DVPP") {
if (RealPath(FLAGS_aipp_path).empty()) {
std::cout << "Invalid aipp path" << std::endl;
return 1;
} else {
ModelContext::SetInsertOpConfigPath(model_context, FLAGS_aipp_path);
}
}
Model model(GraphCell(graph), model_context);
@ -84,7 +92,7 @@ int main(int argc, char **argv) {
std::map<double, double> costTime_map;
size_t size = all_files.size();
Execute resize_op(std::shared_ptr<DvppDecodeResizeJpeg>(new DvppDecodeResizeJpeg({640, 640})));
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
@ -93,11 +101,33 @@ int main(int argc, char **argv) {
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
auto imgDvpp = std::make_shared<MSTensor>();
resize_op(ReadFileToTensor(all_files[i]), imgDvpp.get());
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
if (FLAGS_cpu_dvpp == "DVPP") {
auto resizeShape = {static_cast <uint32_t>(FLAGS_image_height), static_cast <uint32_t>(FLAGS_image_width)};
Execute resize_op(std::shared_ptr<DvppDecodeResizeJpeg>(new DvppDecodeResizeJpeg(resizeShape)));
auto imgDvpp = std::make_shared<MSTensor>();
resize_op(ReadFileToTensor(all_files[i]), imgDvpp.get());
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
imgDvpp->Data().get(), imgDvpp->DataSize());
} else {
std::shared_ptr<TensorTransform> decode(new Decode());
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
std::shared_ptr<TensorTransform> normalize(
new Normalize({123.675, 116.28, 103.53}, {58.395, 57.120, 57.375}));
auto resizeShape = {FLAGS_image_height, FLAGS_image_width};
std::shared_ptr<TensorTransform> resize(new Resize(resizeShape));
Execute composeDecode({decode, resize, normalize, hwc2chw});
auto img = MSTensor();
auto image = ReadFileToTensor(all_files[i]);
composeDecode(image, &img);
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
img.Data().get(), img.DataSize());
}
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);

View File

@ -28,7 +28,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="ssd", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
args = parser.parse_args()

View File

@ -22,7 +22,7 @@ from src.config import config
from src.eval_utils import metrics
batch_size = 1
parser = argparse.ArgumentParser(description="ssd_mobilenet_v1_fpn inference")
parser = argparse.ArgumentParser(description="ssd acc calculation")
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
parser.add_argument("--img_path", type=str, required=True, help="image file path.")
parser.add_argument("--drop", action="store_true", help="drop iscrowd images or not.")
@ -73,9 +73,8 @@ def get_result(result_path, img_id_file_path):
image_shape = np.array([img_size[1], img_size[0]])
result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin")
result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin")
boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(51150, 4)
box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(51150, 81)
boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(config.num_ssd_boxes, 4)
box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(config.num_ssd_boxes, config.num_classes)
pred_data.append({
"boxes": boxes,

View File

@ -14,8 +14,9 @@
# limitations under the License.
# ============================================================================
if [[ $# -lt 2 || $# -gt 3 ]]; then
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
@ -29,14 +30,16 @@ get_real_path(){
}
model=$(get_real_path $1)
data_path=$(get_real_path $2)
DVPP=${3^^}
device_id=0
if [ $# == 3 ]; then
device_id=$3
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "dataset path: "$data_path
echo "image process mode: "$DVPP
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
@ -56,10 +59,7 @@ fi
function compile_app()
{
cd ../ascend310_infer
if [ -f "Makefile" ]; then
make clean
fi
sh build.sh &> build.log
sh build.sh &> build.log
}
function infer()
@ -73,7 +73,14 @@ function infer()
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --aipp_path ../src/aipp.cfg &> infer.log
if [ "$DVPP" == "DVPP" ];then
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --cpu_dvpp=$DVPP --aipp_path=../ascend310_infer/aipp.cfg --image_height=640 --image_width=640 &> infer.log
elif [ "$DVPP" == "CPU" ]; then
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --cpu_dvpp=$DVPP --device_id=$device_id --image_height=300 --image_width=300 &> infer.log
else
echo "image process mode must be in [DVPP|CPU]"
exit 1
fi
}
function cal_acc()