add deeplabv3 and ssd_vgg16 310 inference
modified: model_zoo/official/cv/deeplabv3/README.md modified: model_zoo/official/cv/deeplabv3/README_CN.md
This commit is contained in:
parent
e2ad028194
commit
afb60d37fd
|
@ -482,6 +482,8 @@ Note: There OS is output stride, and MS is multiscale.
|
|||
|
||||
## [Export MindIR](#contents)
|
||||
|
||||
Currently, batchsize can only set to 1.
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
```
|
||||
|
|
|
@ -508,7 +508,6 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
|
|||
|
||||
### 用法
|
||||
|
||||
在执行推理前,air文件必须在910上通过export.py文件导出。
|
||||
目前仅可处理batch_Size为1。
|
||||
|
||||
```shell
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(MindSporeCxxTestcase[CXX])
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT}/../inc)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main main.cc utils.cc)
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -13,6 +13,16 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
if [ ! -d out ]; then
|
||||
mkdir out
|
||||
fi
|
||||
|
||||
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
cd out
|
||||
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1 @@
|
|||
ConvBatchnormFusionPass:off
|
|
@ -52,6 +52,7 @@ using mindspore::dataset::vision::Decode;
|
|||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_string(fusion_switch_path, ".", "fusion switch path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int PadImage(const MSTensor &input, MSTensor *output) {
|
||||
|
@ -122,11 +123,17 @@ int main(int argc, char **argv) {
|
|||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (RealPath(FLAGS_fusion_switch_path).empty()) {
|
||||
std::cout << "Invalid fusion switch path" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
|
||||
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
|
||||
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
|
||||
auto model_context = std::make_shared<mindspore::Context>();
|
||||
if (!FLAGS_fusion_switch_path.empty()) {
|
||||
ModelContext::SetFusionSwitchConfigPath(model_context, FLAGS_fusion_switch_path);
|
||||
}
|
||||
Model model(GraphCell(graph), model_context);
|
||||
Status ret = model.Build();
|
||||
if (ret != kSuccess) {
|
||||
|
|
|
@ -75,6 +75,8 @@ def eval_batch_scales(args, eval_net, img_lst, scales,
|
|||
|
||||
def acc_cal():
|
||||
args = parse_args()
|
||||
args.image_mean = [103.53, 116.28, 123.675]
|
||||
args.image_std = [57.375, 57.120, 58.395]
|
||||
# data list
|
||||
with open(args.data_lst) as f:
|
||||
img_lst = f.readlines()
|
||||
|
|
|
@ -60,10 +60,7 @@ fi
|
|||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer/src
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
cd ../ascend310_infer
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
|
@ -78,7 +75,7 @@ function infer()
|
|||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/src/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --fusion_switch_path=../ascend310_infer/fusion_switch.cfg &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
|
|
|
@ -410,10 +410,11 @@ Current batch_Size can only be set to 1. The precision calculation process needs
|
|||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
|
||||
```
|
||||
|
||||
`DEVICE_ID` is optional, default value is 0.
|
||||
- `DVPP` is mandatory, and must choose from ["DVPP", "CPU"], it's case-insensitive. Note that the image shape of ssd_vgg16 inference is [300, 300], The DVPP hardware restricts width 16-alignment and height even-alignment. Therefore, the network needs to use the CPU operator to process images.
|
||||
- `DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@
|
|||
#include "include/api/serialization.h"
|
||||
#include "include/minddata/dataset/include/vision_ascend.h"
|
||||
#include "include/minddata/dataset/include/execute.h"
|
||||
|
||||
#include "include/minddata/dataset/include/vision.h"
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::GlobalContext;
|
||||
|
@ -42,13 +42,20 @@ using mindspore::GraphCell;
|
|||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::dataset::vision::DvppDecodeResizeJpeg;
|
||||
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::Decode;
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
DEFINE_string(aipp_path, "./aipp.cfg", "aipp path");
|
||||
DEFINE_string(cpu_dvpp, "DVPP", "cpu or dvpp process");
|
||||
DEFINE_int32(image_height, 640, "image height");
|
||||
DEFINE_int32(image_width, 640, "image width");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
|
@ -56,18 +63,19 @@ int main(int argc, char **argv) {
|
|||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
if (RealPath(FLAGS_aipp_path).empty()) {
|
||||
std::cout << "Invalid aipp path" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
GlobalContext::SetGlobalDeviceTarget(mindspore::kDeviceTypeAscend310);
|
||||
GlobalContext::SetGlobalDeviceID(FLAGS_device_id);
|
||||
auto graph = Serialization::LoadModel(FLAGS_mindir_path, ModelType::kMindIR);
|
||||
auto model_context = std::make_shared<mindspore::ModelContext>();
|
||||
if (!FLAGS_aipp_path.empty()) {
|
||||
if (FLAGS_cpu_dvpp == "DVPP") {
|
||||
if (RealPath(FLAGS_aipp_path).empty()) {
|
||||
std::cout << "Invalid aipp path" << std::endl;
|
||||
return 1;
|
||||
} else {
|
||||
ModelContext::SetInsertOpConfigPath(model_context, FLAGS_aipp_path);
|
||||
}
|
||||
}
|
||||
|
||||
Model model(GraphCell(graph), model_context);
|
||||
Status ret = model.Build();
|
||||
|
@ -84,7 +92,7 @@ int main(int argc, char **argv) {
|
|||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = all_files.size();
|
||||
Execute resize_op(std::shared_ptr<DvppDecodeResizeJpeg>(new DvppDecodeResizeJpeg({640, 640})));
|
||||
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
|
@ -93,11 +101,33 @@ int main(int argc, char **argv) {
|
|||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
std::cout << "Start predict input files:" << all_files[i] << std::endl;
|
||||
if (FLAGS_cpu_dvpp == "DVPP") {
|
||||
auto resizeShape = {static_cast <uint32_t>(FLAGS_image_height), static_cast <uint32_t>(FLAGS_image_width)};
|
||||
Execute resize_op(std::shared_ptr<DvppDecodeResizeJpeg>(new DvppDecodeResizeJpeg(resizeShape)));
|
||||
auto imgDvpp = std::make_shared<MSTensor>();
|
||||
resize_op(ReadFileToTensor(all_files[i]), imgDvpp.get());
|
||||
|
||||
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
|
||||
imgDvpp->Data().get(), imgDvpp->DataSize());
|
||||
} else {
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
std::shared_ptr<TensorTransform> normalize(
|
||||
new Normalize({123.675, 116.28, 103.53}, {58.395, 57.120, 57.375}));
|
||||
auto resizeShape = {FLAGS_image_height, FLAGS_image_width};
|
||||
std::shared_ptr<TensorTransform> resize(new Resize(resizeShape));
|
||||
Execute composeDecode({decode, resize, normalize, hwc2chw});
|
||||
auto img = MSTensor();
|
||||
auto image = ReadFileToTensor(all_files[i]);
|
||||
composeDecode(image, &img);
|
||||
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||
if (model_inputs.empty()) {
|
||||
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||
img.Data().get(), img.DataSize());
|
||||
}
|
||||
|
||||
gettimeofday(&start, nullptr);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, nullptr);
|
||||
|
|
|
@ -28,7 +28,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument("--file_name", type=str, default="ssd", help="output file name.")
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
help="device target")
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -22,7 +22,7 @@ from src.config import config
|
|||
from src.eval_utils import metrics
|
||||
|
||||
batch_size = 1
|
||||
parser = argparse.ArgumentParser(description="ssd_mobilenet_v1_fpn inference")
|
||||
parser = argparse.ArgumentParser(description="ssd acc calculation")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
|
||||
parser.add_argument("--img_path", type=str, required=True, help="image file path.")
|
||||
parser.add_argument("--drop", action="store_true", help="drop iscrowd images or not.")
|
||||
|
@ -73,9 +73,8 @@ def get_result(result_path, img_id_file_path):
|
|||
image_shape = np.array([img_size[1], img_size[0]])
|
||||
result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin")
|
||||
result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin")
|
||||
|
||||
boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(51150, 4)
|
||||
box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(51150, 81)
|
||||
boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(config.num_ssd_boxes, 4)
|
||||
box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(config.num_ssd_boxes, config.num_classes)
|
||||
|
||||
pred_data.append({
|
||||
"boxes": boxes,
|
||||
|
|
|
@ -14,8 +14,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
if [[ $# -lt 3 || $# -gt 4 ]]; then
|
||||
echo "Usage: sh run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]
|
||||
DVPP is mandatory, and must choose from [DVPP|CPU], it's case-insensitive
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
@ -29,14 +30,16 @@ get_real_path(){
|
|||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
DVPP=${3^^}
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
if [ $# == 4 ]; then
|
||||
device_id=$4
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "image process mode: "$DVPP
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
|
@ -56,9 +59,6 @@ fi
|
|||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
sh build.sh &> build.log
|
||||
}
|
||||
|
||||
|
@ -73,7 +73,14 @@ function infer()
|
|||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --aipp_path ../src/aipp.cfg &> infer.log
|
||||
if [ "$DVPP" == "DVPP" ];then
|
||||
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --device_id=$device_id --cpu_dvpp=$DVPP --aipp_path=../ascend310_infer/aipp.cfg --image_height=640 --image_width=640 &> infer.log
|
||||
elif [ "$DVPP" == "CPU" ]; then
|
||||
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_path --cpu_dvpp=$DVPP --device_id=$device_id --image_height=300 --image_width=300 &> infer.log
|
||||
else
|
||||
echo "image process mode must be in [DVPP|CPU]"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
|
|
Loading…
Reference in New Issue