!49389 update ops docs 2

Merge pull request !49389 from 李林杰/code_docs_0224_update_ops_docs_master
This commit is contained in:
i-robot 2023-02-28 11:30:09 +00:00 committed by Gitee
commit aeca1ece18
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
10 changed files with 84 additions and 67 deletions

View File

@ -3,15 +3,24 @@
.. py:class:: mindspore.ops.CombinedNonMaxSuppression(clip_boxes=True, pad_per_class=False)
根据分数降序使用非极大抑制法通过遍历所有可能的边界框Bounding Box来选择一个最优的结果
使用非极大值抑制法遍历候选边界框列表,从中选择一组子集,其中边界框按其置信度得分降序排列
参数:
- **clip_boxes** (bool, 可选) - 如果为True则假设边界框坐标在[0,1]之间,如果超出[0,1]则剪辑输出框。如果为False则不进行剪切并按原样输出框坐标。默认值True。
- **pad_per_class** (bool, 可选) - 如果为True输出 `nmsed_boxes``nmsed_scores``nmsed_classes` 将被填充为 `max_output_size_per_class` * num_classes的长度如果该长度超过 `max_total_size` ,在这种情况下它将被裁剪为 `max_total_size` 。如果为False则输出 `nmsed_boxes``nmsed_scores``nmsed_classes` 将被填充/裁剪到 `max_total_size` 。默认值False。
- **clip_boxes** (bool, 可选) - 确定是否应用边界框归一化,以确保坐标在[0,1]范围内。
默认值True。
- 如果为True则剪裁超出此范围的框。
- 如果为False则返回框坐标而不进行任何修改。
- **pad_per_class** (bool, 可选) - 确定是否需要对非极大值抑制NMS算法的输出进行填充或剪裁以满足最大尺寸的限制。
默认值False。
- 如果为False则将输出剪裁到最大尺寸 `max_total_size`
- 如果为True则将输出填充到 `max_size_per_class` * `num_classes` 的最大长度,如果超 `过max_total_size` 则剪裁。
输入:
- **boxes** (Tensor) - Shape可表示为(batch_size, num_boxes, q, 4)。如果q为1则对所有类都使用相同的边界框如果q等于类的数量则对于每一类都使用特定的边界框。数据类型float32。
- **scores** (Tensor) - 表示对应于每个Bounding Boxes( `boxes` 的每一行)的单个分数数据类型必须为float32其shape可表示为(batch_size, num_boxes, num_classes)。
- **boxes** (Tensor) - 边界框坐标是一个float32类型的Tensorshape为 :math:`(batch_size, num_boxes, q, 4)` 。如果q为1则所有类别都使用相同的边界框。否则如果q等于类的数量则对于每一类都使用特定的边界框。
- **scores** (Tensor) - 表示对应于每个Bounding Boxes( `boxes` 的每一行)的单个分数数据类型必须为float32其shape可表示为 :math:`(batch_size, num_boxes, num_classes)`
- **max_output_size_per_class** (Tensor) - 0D Tensor表示每个类中由非极大抑制法non-max suppression选择的Bounding Boxes数目的上限。数据类型int32。
- **max_total_size** (Tensor) - 0D Tensor表示在所有类中可保留的Bounding Boxes数目的上限。数据类型int32。
- **iou_threshold** (Tensor) - 0D Tensor判断Bounding Boxes是否与IOU重叠过多的阈值取值必须在[0,1]区间内。数据类型float32。
@ -33,4 +42,4 @@
- **ValueError** - `scores` 不是3D Tensor。
- **ValueError** - `max_total_size` 小于0。
- **ValueError** - `max_output_size_per_class` 小于0。
- **ValueError** - `iou_threshold` 取值不在区间[0,1]中。
- **ValueError** - `iou_threshold` 取值不在区间[0,1]中。

View File

@ -3,14 +3,14 @@
.. py:class:: mindspore.ops.DataFormatVecPermute(src_format='NHWC', dst_format='NCHW')
将输入按从 `src_format``dst_format` 的变化重新排列
将输入Tensor的数据格式从 `src_format` 转换为 `dst_format` ,通过重新排列其维度来实现
参数:
- **src_format** (str, 可选) - 原先的数据排列格式,可以为'NHWC'和'NCHW'之一。默认值:'NHWC'。
- **src_format** (str, 可选) - 初始数据排列格式,可以为'NHWC'和'NCHW'之一。默认值:'NHWC'。
- **dst_format** (str, 可选) - 目标数据排列格式,可以为'NHWC'和'NCHW'之一。默认值:'NCHW'。
输入:
- **input_x** (Tensor) - shape为(4, )或(4, 2)的输入Tensor。数据类型为int32或int64。
- **input_x** (Tensor) - shape为 :math:`(4, )` :math:`(4, 2)` 的输入Tensor。数据类型为int32或int64。
输出:
`input_x` 的shape和数据类型一致的Tensor。
@ -18,5 +18,5 @@
异常:
- **TypeError** - 输入 `input_x` 不是Tensor。
- **TypeError** - `input_x` 的数据类型不是int32或int64。
- **ValueError** - `input_x` 的shape不为(4, )或(4, 2)
- **ValueError** - `src_format``dst_format` 不是'NHWC'或'NCHW'之一。
- **ValueError** - `input_x` 的shape不为 :math:`(4, )` or :math:`(4, 2)`
- **ValueError** - `src_format``dst_format` 不是'NHWC'或'NCHW'之一。

View File

@ -3,7 +3,7 @@ mindspore.ops.DiagPart
.. py:class:: mindspore.ops.DiagPart
返回输入的对角线部分
提取输入Tensor的对角线元素
假如 `input_x` 有维度 :math:`[D_1,..., D_k, D_1,..., D_k]`那么输出是一个秩为k的Tensor维度为 :math:`[D_1,..., D_k]`,其中:

View File

@ -3,15 +3,15 @@
.. py:class:: mindspore.ops.EuclideanNorm(keep_dims=False)
计算Tensor维度上元素的欧几里得范数,根据给定的轴对输入进行规约操作
计算Tensor沿指定轴的欧几里得范数又称L2范数。默认情况下会移除axis中指定的维度
参数:
- **keep_dims** (bool可选) - 如果为True被规约的轴保留为1如果为False不保留给定的这些轴默认值False。
输入:
- **x** (Tensor) - 输入Tensor将被规约,数据类型为float16、float32、float64、int8、int16、
- **x** (Tensor) - 输入Tensor数据类型为float16、float32、float64、int8、int16、
int32、int64、complex64、complex128、uint8、uint16、uint32、uint64。
- **axes** (Tensor) - 将进行规约的轴。数据类型为int32、int64。取值范围为 `[-rank(x), rank(x))`
- **axes** (Tensor) - 指定进行规约计算的维度。数据类型为int32、int64。取值范围为 `[-rank(x), rank(x))`
输出:
Tensor与输入 `x` 具有相同的数据类型。

View File

@ -3,6 +3,6 @@
.. py:class:: mindspore.ops.Expand
返回一个当前张量的新视图,其中单维度扩展到更大的尺寸
沿着Tensor单维度进行扩展以匹配给定的目标shape
更多细节请参考 :func:`mindspore.ops.expand`

View File

@ -3,17 +3,17 @@ mindspore.ops.FillDiagonal
.. py:class:: mindspore.ops.FillDiagonal(fill_value, wrap=False)
填充至少具有二维的Tensor的主对角线。当 `dims>2` 时,输入的所有维度必须等长。此函数就地修改输入Tensor并返回输入Tensor。
填充至少具有二维的Tensor的主对角线。当输入的维度大于2时所有维度必须等长。此函数原地修改输入Tensor并返回输入Tensor。
参数:
- **fill_value** (float) - 填充值。
- **wrap** (bool可选) - 如果设置为True, 表示高矩阵N列之后的对角线 `wrapped` ,否则不处理,默认值False。
- **fill_value** (float) - `input_x` 对角线的填充值。
- **wrap** (bool可选) - 控制对于一个高矩阵(即矩阵的行数大于列数),对角线元素是否继续延伸到剩余的行。下面的例子说明产生怎样的效果。默认值False。
输入:
- **input_x** (Tensor) - shape为 :math:`(x_1, x_2, ..., x_R)` 其数据类型必须为float32、int32或者int64。
输出:
- **y** (Tensor) - Tensor和输入 `x` 具有相同的shape和dtype。
- **y** (Tensor) - Tensor和输入 `input_x` 具有相同的shape和dtype。
异常:
- **TypeError** - 如果 `input_x` 的dtype不是float32、int32或者int64。

View File

@ -176,7 +176,7 @@ def _check_infer_attr_reduce(axis, keep_dims, prim_name):
class Expand(Primitive):
"""
Returns a new view of the self tensor with singleton dimensions expanded to a larger size.
Expands the Tensor along singleton dimensions to match given desired shape.
Refer to :func:`mindspore.ops.expand` for more details.
@ -3571,10 +3571,10 @@ class Diag(PrimitiveWithCheck):
class DiagPart(PrimitiveWithCheck):
r"""
Extracts the diagonal part from given tensor.
Extracts the diagonal elements from the given Tensor.
Assume input has dimensions :math:`[D_1,..., D_k, D_1,..., D_k]`, the output is a tensor
of rank k with dimensions :math:`[D_1,..., D_k]` where:
If the input is a Tensor of shape :math:`[D_1,..., D_k, D_1,..., D_k]`, then the
output will be a Tensor of rank k of shape :math:`[D_1,..., D_k]` where:
:math:`output[i_1,..., i_k] = input[i_1,..., i_k, i_1,..., i_k]`.
Inputs:
@ -7586,20 +7586,23 @@ class LeftShift(Primitive):
class FillDiagonal(Primitive):
"""
Fill the main diagonal of a tensor that has at least 2-dimensions.
When dims>2, all dimensions of input must be of equal length.
This function modifies the input tensor in-place, and returns the input tensor.
Fills the main diagonal of a Tensor in-place with a specified value and returns the result.
The input has at least 2 dimensions, and all dimensions of input must be equal in length
when the dimension of input is greater than 2.
Args:
fill_value (float): The fill value.
wrap (bool, optional): the diagonal `wrapped` after N columns for tall matrices. Default: False.
fill_value (float): The value to fill the diagonal of `input_x`.
wrap (bool, optional): Controls whether the diagonal elements continue onto the
remaining rows in case of a tall matrix(A matrix has more rows than columns).
Examples blow demonstrates how it works on a tall matrix if `wrap` is set True.
Default: False.
Inputs:
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
The data type must be float32, int32 or int64.
Outputs:
- **y** (Tensor) - Tensor, has the same shape and data type as the input `x`.
- **y** (Tensor) - Tensor, has the same shape and data type as the input `input_x`.
Raises:
TypeError: If data type of `input_x` is not one of the following: float32, int32, int64.

View File

@ -1066,33 +1066,40 @@ class ScaleAndTranslate(Primitive):
class CombinedNonMaxSuppression(Primitive):
r"""
Greedily selects a subset of bounding boxes in descending order of score.
Applies a greedy approach to select a subset of bounding boxes from a list of
candidates using NonMaxSuppression, where the boxes are sorted in descending order of their confidence score.
Args:
clip_boxes (bool, optional): If true, assume the box coordinates are between [0, 1] and clip the output boxes
if they fall beyond [0, 1]. If false, do not do clipping and output the box coordinates as it is.
Defaults to true.
pad_per_class (bool, optional): If false, the output nmsed boxes,
scores and classes are padded/clipped to max_total_size.
If true, the output nmsed boxes, scores and classes are padded to be of length
max_size_per_class * num_classes, unless it exceeds max_total_size in which case it is clipped to
max_total_size. Defaults to false.
clip_boxes (bool, optional): Determines whether to apply bounding box normalization to ensure the
coordinates are within [0, 1] range. Default: True.
- If True, clip the boxes that fall outside this range.
- If False, return the box coordinates as they are without any modifications.
pad_per_class (bool, optional): Determines whether the output of the non-maximum suppression (NMS)
algorithm should be padded or clipped to meet the maximum size constraints. Default: False.
- If False, the output is clipped to the maximum size of `max_total_size`.
- If True, the output is padded up to `max_size_per_class` * `num_classes` and clipped if
it exceeds `max_total_size`.
Inputs:
- **boxes** (Tensor) - A Tensor of type float32 and shape (batch_size, num_boxes, q, 4).
If q is 1 then same boxes are used for all classes otherwise,
if q is equal to number of classes, class-specific boxes are used.
- **scores** (Tensor) - A Tensor of type float32 and shape (batch_size, num_boxes, num_classes)
representing a single score corresponding to each box (each row of boxes).
- **max_output_size_per_class** (Tensor) - A 0D Tensor of type int32, representing the max number of boxes to be
selected by non max suppression per class.
- **max_total_size** (Tensor) - A 0D Tensor of type int32, representing the maximum number of boxes retained
over all classes.
- **iou_threshold** (Tensor) - A 0D float32 tensor representing the threshold for deciding whether
boxes overlap too much with respect to IOU, and iou_threshold must be equal or greater
- **boxes** (Tensor) - A float32 Tensor with shape :math:`(batch_size, num_boxes, q, 4)`
representing the bounding box coordinates.
`q` can be 1, indicating that all classes use the same bounding box, or the number of classes,
indicating that class-specific boxes are applied.
- **scores** (Tensor) - A 3-D Tensor of float32 type with the shape
:math:`(batch_size, num_boxes, num_classes)`. It contains a score value for each box,
with each row of `boxes` represented by a single score.
- **max_output_size_per_class** (Tensor) - The maximum number of boxes that can be selected for each class
by the non-maximum suppression algorithm, represented by a scalar Tensor of type int32.
- **max_total_size** (Tensor) - A scalar Tensor of type int32 that represents the
maximum number of boxes that are kept for all classes.
- **iou_threshold** (Tensor) - A scalar Tensor of float32 type that represents the threshold for
determining if the IOU overlap between boxes is too high. `iou_threshold` must be equal or greater
than 0 and be equal or smaller than 1.
- **score_threshold** (Tensor) - A 0D float32 tensor representing the threshold for deciding when to remove
boxes based on score.
- **score_threshold** (Tensor) - A scalar Tensor of type float32 that represents the threshold
for determining when to remove boxes based on their scores.
Outputs:
- **nmsed_boxes** - A Tensor of float32 with shape of (batch_size, num_detection, 4), which contains

View File

@ -538,18 +538,17 @@ class _Reduce(PrimitiveWithCheck):
class EuclideanNorm(Primitive):
"""
Computes the euclidean norm of elements across dimensions of a tensor.
Reduces input along the dimensions given in axis.
Calculates the Euclidean norm(aka L2 norm) of a Tensor along the specified axes.
The specified `axes` are removed by default.
Args:
keep_dims (bool, optional): If true, the reduceed dimensions are retained with length 1.
If false, don't keep these dimensions. Default: False.
keep_dims (bool, optional): whether to retain the reduced dimensions. If true, retains them with length 1.
If false, these dimensions are removed. Default: False.
Inputs:
- **x** (Tensor) - The input tensor. Must be one of the following types :float16, float32, float64, int8, int16,
int32, int64, complex64, complex128, uint8, uint16, uint32, uint64. The tensor to reduce.
- **axes** (Tensor) - The dimensions to reduce. Must be one of the following types: int32, int64.
Must be in the range [-rank(x), rank(x)).
- **x** (Tensor) - The input Tensor to reduce. Must be one of the following types:
float16, float32, float64, int8, int16, int32, int64, complex64, complex128, uint8, uint16, uint32, uint64.
- **axes** (Tensor) - The axes to perform reduction on. Must be one of the following types: int32, int64.
Outputs:
Tensor, has the same type as the 'x'.

View File

@ -1395,16 +1395,15 @@ class Conv2D(Primitive):
class DataFormatVecPermute(Primitive):
r"""
Permute input tensor from src_format to dst_format.
Converts the input tensor from the `src_format` to the `dst_format` by permuting its dimensions.
Args:
src_format (str, optional): An optional value for source data format. The format can be 'NHWC' and 'NCHW'.
Default: 'NHWC'.
dst_format (str, optional): An optional value for destination data format. The format can be 'NHWC' and 'NCHW'.
Default: 'NCHW'.
src_format (str, optional): the source data format, which can be 'NHWC' and 'NCHW'. Default: 'NHWC'.
dst_format (str, optional): the target data format, which can be 'NHWC' and 'NCHW'. Default: 'NCHW'.
Inputs:
- **input_x** (Tensor) - A Tensor of shape (4, ) or (4, 2) in source data format. Only supports int32 and int64.
- **input_x** (Tensor) - A Tensor of shape :math:`(4, )` or :math:`(4, 2)` in source data format.
Supports int32 and int64 datatype.
Outputs:
Tensor, has the same data type and shape as the `input_x`.
@ -1413,7 +1412,7 @@ class DataFormatVecPermute(Primitive):
TypeError: If `input_x` is not a Tensor.
TypeError: If dtype of `input_x` is neither int32 nor int64.
ValueError: If `src_format` or `dst_format` is not a str in ['NHWC', 'NCHW'].
ValueError: If input_x shape is not (4, ) or (4, 2).
ValueError: If `input_x` shape is not :math:`(4, )` or :math:`(4, 2).
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``