!11895 unify mindir for different backend: the output num of optimizer ops, the backward of concat

From: @wangnan39
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-02-05 16:27:19 +08:00 committed by Gitee
commit aebe263dce
15 changed files with 234 additions and 211 deletions

View File

@ -292,7 +292,6 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
ir_fusion_pm->AddPass(std::make_shared<EraseVisitAttr>());
}
ir_fusion_pm->AddPass(std::make_shared<InsertMemcpyAsyncForHcclOp>());
ir_fusion_pm->AddPass(std::make_shared<AddInputToOutput>());
ir_fusion_pm->AddPass(std::make_shared<InsertTranspose>());
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
ir_fusion_pm->AddPass(std::make_shared<EraseVisitAttr>());

View File

@ -0,0 +1,126 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/ascend/mindir/optimizer_unify_output.h"
#include <vector>
#include <memory>
#include "abstract/abstract_value.h"
#include "backend/session/anf_runtime_algorithm.h"
namespace mindspore {
namespace opt {
namespace {
constexpr size_t kFtrlOutputNum = 3;
constexpr size_t kMomentumOutputNum = 2;
constexpr size_t kRMSPropOutputNum = 3;
constexpr size_t kCenteredRMSPropOutputNum = 4;
CNodePtr ProcessOutput(const FuncGraphPtr &graph, const AnfNodePtr &node, const size_t output_size) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
auto cnode_ptr = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode_ptr);
auto abstract = cnode_ptr->abstract();
MS_EXCEPTION_IF_NULL(abstract);
if (AnfAlgo::HasNodeAttr("optim_output_passed", cnode_ptr) && abstract->isa<abstract::AbstractTuple>()) {
return nullptr;
}
AnfAlgo::SetNodeAttr("optim_output_passed", MakeValue(true), cnode_ptr);
std::vector<AbstractBasePtr> abstract_list;
for (size_t i = 0; i < output_size; i++) {
abstract_list.push_back(abstract->Clone());
}
auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list);
cnode_ptr->set_abstract(abstract_tuple);
auto index = NewValueNode(static_cast<int64_t>(0));
auto get_item = graph->NewCNode({NewValueNode(prim::kPrimTupleGetItem), cnode_ptr, index});
MS_EXCEPTION_IF_NULL(get_item);
get_item->set_abstract(abstract->Clone());
return get_item;
}
} // namespace
const BaseRef FtrlUnifyOutput::DefinePattern() const {
VarPtr var = std::make_shared<Var>();
VarPtr accum = std::make_shared<Var>();
VarPtr linear = std::make_shared<Var>();
VarPtr grad = std::make_shared<Var>();
VarPtr lr = std::make_shared<Var>();
VarPtr l1 = std::make_shared<Var>();
VarPtr l2 = std::make_shared<Var>();
VarPtr lr_power = std::make_shared<Var>();
VectorRef pattern({prim::kPrimApplyFtrl, var, accum, linear, grad, lr, l1, l2, lr_power});
return pattern;
}
const AnfNodePtr FtrlUnifyOutput::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const {
return ProcessOutput(graph, node, kFtrlOutputNum);
}
const BaseRef MomentumUnifyOutput::DefinePattern() const {
VarPtr var = std::make_shared<Var>();
VarPtr accum = std::make_shared<Var>();
VarPtr lr = std::make_shared<Var>();
VarPtr grad = std::make_shared<Var>();
VarPtr momentum = std::make_shared<Var>();
VectorRef pattern({prim::kPrimApplyMomentum, var, accum, lr, grad, momentum});
return pattern;
}
const AnfNodePtr MomentumUnifyOutput::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
return ProcessOutput(graph, node, kMomentumOutputNum);
}
const BaseRef RMSPropUnifyOutput::DefinePattern() const {
VarPtr inputs = std::make_shared<SeqVar>();
VectorRef pattern({prim::kPrimApplyRMSProp, inputs});
return pattern;
}
const AnfNodePtr RMSPropUnifyOutput::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
return ProcessOutput(graph, node, kRMSPropOutputNum);
}
const BaseRef CenteredRMSPropUnifyOutput::DefinePattern() const {
VarPtr var = std::make_shared<Var>();
VarPtr mg = std::make_shared<Var>();
VarPtr ms = std::make_shared<Var>();
VarPtr mom = std::make_shared<Var>();
VarPtr grad = std::make_shared<Var>();
VarPtr lr = std::make_shared<Var>();
VarPtr rho = std::make_shared<Var>();
VarPtr momentum = std::make_shared<Var>();
VarPtr epsilon = std::make_shared<Var>();
VectorRef pattern({prim::kPrimApplyCenteredRMSProp, var, mg, ms, mom, grad, lr, rho, momentum, epsilon});
return pattern;
}
const AnfNodePtr CenteredRMSPropUnifyOutput::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
return ProcessOutput(graph, node, kCenteredRMSPropOutputNum);
}
} // namespace opt
} // namespace mindspore

View File

@ -0,0 +1,58 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_MINDIR_OPTIMIZER_UNIFY_OUTPUT_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_MINDIR_OPTIMIZER_UNIFY_OUTPUT_H_
#include <memory>
#include "backend/optimizer/common/optimizer.h"
namespace mindspore {
namespace opt {
class FtrlUnifyOutput : public PatternProcessPass {
public:
explicit FtrlUnifyOutput(bool multigraph = true) : PatternProcessPass("ftrl_unify_output", multigraph) {}
~FtrlUnifyOutput() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
class MomentumUnifyOutput : public PatternProcessPass {
public:
explicit MomentumUnifyOutput(bool multigraph = true) : PatternProcessPass("momentum_unify_output", multigraph) {}
~MomentumUnifyOutput() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
class CenteredRMSPropUnifyOutput : public PatternProcessPass {
public:
explicit CenteredRMSPropUnifyOutput(bool multigraph = true)
: PatternProcessPass("centered_rmsprop_unify_output", multigraph) {}
~CenteredRMSPropUnifyOutput() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
class RMSPropUnifyOutput : public PatternProcessPass {
public:
explicit RMSPropUnifyOutput(bool multigraph = true) : PatternProcessPass("rmsprop_unify_output", multigraph) {}
~RMSPropUnifyOutput() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_MINDIR_OPTIMIZER_UNIFY_OUTPUT_H_

View File

@ -38,6 +38,7 @@
#include "backend/optimizer/ascend/mindir/maxpool_to_maxpool_with_argmax.h"
#include "backend/optimizer/ascend/mindir/maxpool_with_argmax_unify_mindir.h"
#include "backend/optimizer/ascend/mindir/conv2d_unify_mindir.h"
#include "backend/optimizer/ascend/mindir/optimizer_unify_output.h"
#include "backend/optimizer/ascend/mindir/sparse_softmax_cross_entropy_with_logits_unify_mindir.h"
#include "backend/optimizer/ascend/mindir/slice_grad_unify_mindir.h"
#include "runtime/device/kernel_adjust.h"
@ -221,6 +222,10 @@ void AscendSession::UnifyMindIR(const KernelGraphPtr &graph) {
unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DBackpropInputUnifyMindIR>());
unify_mindir_pm->AddPass(std::make_shared<opt::Conv2DBackpropFilterUnifyMindIR>());
unify_mindir_pm->AddPass(std::make_shared<opt::SliceGradUnifyMindIR>());
unify_mindir_pm->AddPass(std::make_shared<opt::FtrlUnifyOutput>());
unify_mindir_pm->AddPass(std::make_shared<opt::MomentumUnifyOutput>());
unify_mindir_pm->AddPass(std::make_shared<opt::RMSPropUnifyOutput>());
unify_mindir_pm->AddPass(std::make_shared<opt::CenteredRMSPropUnifyOutput>());
auto ms_context = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(ms_context);
if (ms_context->get_param<int>(MS_CTX_EXECUTION_MODE) == kGraphMode) {

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -143,13 +143,13 @@ ATTR_MAP(SparseApplyFtrlD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<b
OUTPUT_MAP(SparseApplyFtrlD) = {{0, OUTPUT_DESC(var)}};
REG_ADPT_DESC(SparseApplyFtrlD, kNameSparseApplyFtrlD, ADPT_DESC(SparseApplyFtrlD))
// ApplyFtrlD
INPUT_MAP(ApplyFtrlD) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(linear)},
{4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}, {6, INPUT_DESC(l1)},
{7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}};
ATTR_MAP(ApplyFtrlD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ApplyFtrlD) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(accum)}, {2, OUTPUT_DESC(linear)}};
REG_ADPT_DESC(ApplyFtrlD, kNameApplyFtrl, ADPT_DESC(ApplyFtrlD))
// ApplyFtrl
INPUT_MAP(ApplyFtrl) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(linear)},
{4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}, {6, INPUT_DESC(l1)},
{7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}};
ATTR_MAP(ApplyFtrl) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ApplyFtrl) = {{0, OUTPUT_DESC(var)}};
REG_ADPT_DESC(ApplyFtrl, kNameApplyFtrl, ADPT_DESC(ApplyFtrl))
// ApplyRMSPropD
INPUT_MAP(ApplyRMSPropD) = {
@ -161,12 +161,11 @@ ATTR_MAP(ApplyRMSPropD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool
OUTPUT_MAP(ApplyRMSPropD) = {{0, OUTPUT_DESC(var)}};
REG_ADPT_DESC(ApplyRMSPropD, kNameApplyRMSProp, ADPT_DESC(ApplyRMSPropD))
// ApplyCenteredRMSPropD
INPUT_MAP(ApplyCenteredRMSPropD) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(mg)}, {3, INPUT_DESC(ms)},
{4, INPUT_DESC(mom)}, {5, INPUT_DESC(grad)}, {6, INPUT_DESC(lr)},
{7, INPUT_DESC(rho)}, {8, INPUT_DESC(momentum)}, {9, INPUT_DESC(epsilon)}};
ATTR_MAP(ApplyCenteredRMSPropD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ApplyCenteredRMSPropD) = {
{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(mg)}, {2, OUTPUT_DESC(ms)}, {3, OUTPUT_DESC(mom)}};
REG_ADPT_DESC(ApplyCenteredRMSPropD, kNameApplyCenteredRMSProp, ADPT_DESC(ApplyCenteredRMSPropD))
// ApplyCenteredRMSProp
INPUT_MAP(ApplyCenteredRMSProp) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(mg)}, {3, INPUT_DESC(ms)},
{4, INPUT_DESC(mom)}, {5, INPUT_DESC(grad)}, {6, INPUT_DESC(lr)},
{7, INPUT_DESC(rho)}, {8, INPUT_DESC(momentum)}, {9, INPUT_DESC(epsilon)}};
ATTR_MAP(ApplyCenteredRMSProp) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
OUTPUT_MAP(ApplyCenteredRMSProp) = {{0, OUTPUT_DESC(var)}};
REG_ADPT_DESC(ApplyCenteredRMSProp, kNameApplyCenteredRMSProp, ADPT_DESC(ApplyCenteredRMSProp))
} // namespace mindspore::transform

View File

@ -62,8 +62,8 @@ DECLARE_OP_USE_OUTPUT(ApplyProximalAdagradD)
DECLARE_OP_ADAPTER(LarsV2Update)
DECLARE_OP_USE_OUTPUT(LarsV2Update)
DECLARE_OP_ADAPTER(ApplyFtrlD)
DECLARE_OP_USE_OUTPUT(ApplyFtrlD)
DECLARE_OP_ADAPTER(ApplyFtrl)
DECLARE_OP_USE_OUTPUT(ApplyFtrl)
DECLARE_OP_ADAPTER(SparseApplyFtrlD)
DECLARE_OP_USE_OUTPUT(SparseApplyFtrlD)
@ -72,7 +72,7 @@ DECLARE_OP_ADAPTER(ApplyRMSPropD)
DECLARE_OP_USE_INPUT_ATTR(ApplyRMSPropD)
DECLARE_OP_USE_OUTPUT(ApplyRMSPropD)
DECLARE_OP_ADAPTER(ApplyCenteredRMSPropD)
DECLARE_OP_USE_OUTPUT(ApplyCenteredRMSPropD)
DECLARE_OP_ADAPTER(ApplyCenteredRMSProp)
DECLARE_OP_USE_OUTPUT(ApplyCenteredRMSProp)
} // namespace mindspore::transform
#endif // MINDSPORE_CCSRC_TRANSFORM_GRAPH_IR_OP_DECLARE_NN_TRAINING_OPS_DECLARE_H_

View File

@ -244,6 +244,7 @@ inline const PrimitivePtr kPrimSparseSoftmaxCrossEntropyWithLogits =
std::make_shared<Primitive>("SparseSoftmaxCrossEntropyWithLogits");
inline const PrimitivePtr kPrimMomentum = std::make_shared<Primitive>("Momentum");
inline const PrimitivePtr kPrimApplyMomentum = std::make_shared<Primitive>("ApplyMomentum");
inline const PrimitivePtr kPrimApplyFtrl = std::make_shared<Primitive>("ApplyFtrl");
inline const PrimitivePtr kPrimLayerNorm = std::make_shared<Primitive>("LayerNorm");
inline const PrimitivePtr kPrimLrn = std::make_shared<Primitive>("Lrn");
inline const PrimitivePtr kPrimLayerNormGrad = std::make_shared<Primitive>("LayerNormGrad");
@ -456,7 +457,7 @@ inline const PrimitivePtr kPrimGetRefKey = std::make_shared<Primitive>("get_ref_
inline const PrimitivePtr kPrimMakeRef = std::make_shared<Primitive>("make_ref");
inline const PrimitivePtr kPrimGetRefValue = std::make_shared<Primitive>("get_ref_value");
// Other primitve not used by backend but used in core;
// Other primitive not used by backend but used in core;
inline const PrimitivePtr kPrimStateSetItem = std::make_shared<Primitive>("state_setitem");
inline const PrimitivePtr kPrimJ = std::make_shared<Primitive>("J");

View File

@ -317,7 +317,6 @@ def _concat_grad_uniform(input_shapes, input_nums):
def get_bprop_concat(self):
"""Generate bprop for Concat"""
axis = self.axis
is_ascend = context.get_context('device_target') == "Ascend"
def bprop(x, out, dout):
dx = ()
@ -327,7 +326,7 @@ def get_bprop_concat(self):
for i in range(input_nums):
input_shapes = input_shapes + (shape_op(x[i]),)
is_uniform = _concat_grad_uniform(input_shapes, input_nums)
if is_uniform and is_ascend:
if is_uniform:
dx = P.Split(axis, input_nums)(dout)
else:
for i in range(input_nums):

View File

@ -2415,12 +2415,8 @@ class ApplyMomentum(PrimitiveWithInfer):
validator.check_value_type('gradient_scale', gradient_scale, [float], self.name)
self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'],
outputs=['output'])
self.is_tbe = context.get_context("device_target") == "Ascend"
self.is_ge = context.get_context("enable_ge")
def infer_shape(self, v_shape, a_shape, l_shape, g_shape, m_shape):
if not self.is_ge and self.is_tbe:
return v_shape, v_shape
return v_shape
def infer_dtype(self, v_dtype, a_dtype, l_dtype, g_dtype, m_dtype):
@ -2431,9 +2427,7 @@ class ApplyMomentum(PrimitiveWithInfer):
validator.check_scalar_or_tensor_types_same({"l_dtype": l_dtype}, valid_dtypes, self.name)
validator.check_scalar_or_tensor_types_same({"g_dtype": g_dtype}, valid_dtypes, self.name)
validator.check_scalar_or_tensor_types_same({"m_dtype": m_dtype}, valid_dtypes, self.name)
if not self.is_ge and self.is_tbe:
return g_dtype, g_dtype
return g_dtype
return v_dtype
class SmoothL1Loss(PrimitiveWithInfer):
@ -2765,9 +2759,8 @@ class ApplyRMSProp(PrimitiveWithInfer):
>>> momentum = 1e-10
>>> epsilon = 0.001
>>> output = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon)
>>> print(output)
(Tensor(shape=[], dtype=Float32, value= 0.100112), Tensor(shape=[], dtype=Float32, value= 4),
Tensor(shape=[], dtype=Float32, value= 0.899888))
>>> output
Tensor(shape=[], dtype=Float32, value= 0.100112)
"""
@prim_attr_register
@ -2775,16 +2768,12 @@ class ApplyRMSProp(PrimitiveWithInfer):
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'mean_square', 'moment', 'learning_rate', 'grad',
'rho', 'momentum', 'epsilon'], outputs=['output'])
self.is_ge = context.get_context("enable_ge")
self.is_d = context.get_context("device_target") == "Ascend"
def infer_shape(self, var_shape, mean_square_shape, moment_shape, learning_rate_shape, grad_shape, decay_shape,
momentum_shape, epsilon_shape):
validator.check("var_shape", var_shape, "mean_square_shape", mean_square_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "moment_shape", moment_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
if not self.is_ge and self.is_d:
return var_shape, var_shape, var_shape
return var_shape
def infer_dtype(self, var_dtype, mean_square_dtype, moment_dtype, learning_rate_dtype, grad_dtype, decay_dtype,
@ -2797,8 +2786,6 @@ class ApplyRMSProp(PrimitiveWithInfer):
validator.check_types_same_and_valid(args_decay, valid_dtypes, self.name)
args_lr = {"learning_rate": learning_rate_dtype, "decay": decay_dtype}
validator.check_scalar_or_tensor_types_same(args_lr, valid_dtypes, self.name, allow_mix=True)
if not self.is_ge and self.is_d:
return var_dtype, var_dtype, var_dtype
return var_dtype
def infer_value(self, var, mean_square, moment, learning_rate, grad, decay, momentum, epsilon):
@ -2869,22 +2856,15 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
>>> epsilon = 0.05
>>> output = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad,
... learning_rate, decay, momentum, epsilon)
>>> print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
>>> output
Tensor(shape=[2, 2], dtype=Float32, value=
[[-2.00000000e+00, -5.02492237e+00],
[-8.04984474e+00, -1.10747662e+01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 0.00000000e+00, 1.00000000e+00],
[ 2.00000000e+00, 3.00000000e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 0.00000000e+00, 1.00000000e+00],
[ 4.00000000e+00, 9.00000000e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 0.00000000e+00, 4.02492237e+00],
[ 8.04984474e+00, 1.20747662e+01]]))
[-8.04984474e+00, -1.10747662e+01]])
"""
@prim_attr_register
def __init__(self, use_locking=False):
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.is_ascend = context.get_context("device_target") == "Ascend"
def infer_shape(self, var_shape, mean_gradient_shape, mean_square_shape, moment_shape, grad_shape,
learning_rate_shape, decay_shape, momentum_shape, epsilon_shape):
@ -2892,8 +2872,6 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
validator.check("var_shape", var_shape, "mean_square_shape", mean_square_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "moment_shape", moment_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
if self.is_ascend:
return var_shape, mean_gradient_shape, mean_square_shape, moment_shape
return var_shape
def infer_dtype(self, var_dtype, mean_gradient_dtype, mean_square_dtype, moment_dtype, grad_dtype,
@ -2907,8 +2885,6 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
validator.check_types_same_and_valid(args_rho, valid_dtypes, self.name)
args_lr = {"learning_rate": learning_rate_dtype, "rho": rho_dtype}
validator.check_scalar_or_tensor_types_same(args_lr, valid_dtypes, self.name, allow_mix=True)
if self.is_ascend:
return var_dtype, mean_gradient_dtype, mean_square_dtype, moment_dtype
return var_dtype
@ -6185,15 +6161,8 @@ class ApplyFtrl(PrimitiveWithInfer):
Default: -0.5. It must be a float number or a scalar tensor with float16 or float32 data type.
Outputs:
There are three outputs for Ascend environment.
- **var** (Tensor) - represents the updated `var`.
- **accum** (Tensor) - represents the updated `accum`.
- **linear** (Tensor) - represents the updated `linear`.
There is only one output for GPU environment.
- **var** (Tensor) - This value is always zero and the input parameters has been updated in-place.
- **var** (Tensor) - represents the updated `var`. As the input parameters has been updated in-place, this
value is always zero when the platforms is GPU.
Supported Platforms:
``Ascend`` ``GPU``
@ -6226,26 +6195,10 @@ class ApplyFtrl(PrimitiveWithInfer):
>>> net = ApplyFtrlNet()
>>> input_x = Tensor(np.random.randint(-4, 4, (2, 2)), mindspore.float32)
>>> output = net(input_x)
>>> is_tbe = context.get_context("device_target") == "Ascend"
>>> if is_tbe:
... print(output)
(Tensor(shape=[2, 2], dtype=Float32, value=
>>> output
Tensor(shape=[2, 2], dtype=Float32, value=
[[ 4.61418092e-01, 5.30964255e-01],
[ 2.68715084e-01, 3.82065028e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[ 1.64236546e+01, 9.64589405e+00],
[ 1.43758726e+00, 9.89177322e+00]]), Tensor(shape=[2, 2], dtype=Float32, value=
[[-1.86994812e+03, -1.64906018e+03],
[-3.22187836e+02, -1.20163989e+03]]))
... else:
... print(net.var.asnumpy())
[[0.4614181 0.5309642 ]
[0.2687151 0.38206503]]
... print(net.accum.asnumpy())
[[16.423655 9.645894 ]
[ 1.4375873 9.891773 ]]
... print(net.linear.asnumpy())
[[-1869.9479 -1649.0599]
[ -322.1879 -1201.6399]]
[ 2.68715084e-01, 3.82065028e-01]])
"""
@prim_attr_register
@ -6253,14 +6206,11 @@ class ApplyFtrl(PrimitiveWithInfer):
self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'lr', 'l1', 'l2', 'lr_power'],
outputs=['output'])
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.is_tbe = context.get_context("device_target") == "Ascend"
def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, lr_shape, l1_shape, l2_shape,
lr_power_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name)
if self.is_tbe:
return var_shape, var_shape, var_shape
return var_shape
def infer_dtype(self, var_type, accum_type, linear_type, grad_type, lr_type, l1_type, l2_type, lr_power_type):
@ -6272,8 +6222,6 @@ class ApplyFtrl(PrimitiveWithInfer):
validator.check_scalar_or_tensor_types_same({"l1": l1_type}, valid_dtypes, self.name)
validator.check_scalar_or_tensor_types_same({"l2": l2_type}, valid_dtypes, self.name)
validator.check_scalar_or_tensor_types_same({"lr_power": lr_power_type}, valid_dtypes, self.name)
if self.is_tbe:
return var_type, var_type, var_type
return var_type

View File

@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -48,7 +48,8 @@ class MockInsertMemcpyForHcclKernelQuery : public KernelQuery {
if (!node->isa<CNode>()) {
return false;
}
return AnfAlgo::GetCNodeName(node->cast<CNodePtr>()) == "ApplyMomentum";
auto node_name = AnfAlgo::GetCNodeName(node->cast<CNodePtr>());
return node_name == "ApplyMomentum" || node_name == "AssignAdd";
}
};
@ -103,9 +104,9 @@ TEST_F(TestHWInsertMemcpyForHccl, test_cond3) {
get_py_fun_.SetDoResolve(true);
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_insert_memcpy_async_for_hccl_op_cond3", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int64_t> shp_x{1, 64, 112, 112};
std::vector<int64_t> shp_x{3, 2};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract, x_abstract, x_abstract, x_abstract, x_abstract};
AbstractBasePtrList args_spec_list{x_abstract, x_abstract};
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);

View File

@ -1,74 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/backend_common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "debug/anf_ir_dump.h"
#define private public
#define protected public
#include "backend/optimizer/ascend/ir_fusion/add_input_to_output.h"
#undef private
#undef protected
namespace mindspore {
namespace opt {
class TestHWAddInputToOutput : public BackendCommon {
public:
TestHWAddInputToOutput() : getPyFun_("gtest_input.pre_activate.add_input_to_output_test", true) {}
~TestHWAddInputToOutput() override = default;
public:
UT::PyFuncGraphFetcher getPyFun_;
};
class MockOpFinder : public OpFinder {
public:
MockOpFinder() = default;
~MockOpFinder() override = default;
int GetOpRegisteredOutputNum(const std::string &op_name, const CNodePtr &cnode) override { return 2; }
};
TEST_F(TestHWAddInputToOutput, test_add_input_to_output) {
FuncGraphPtr g = getPyFun_.CallAndParseRet("test_add_input_to_output", "before");
EXPECT_NE(g, nullptr);
std::vector<int64_t> shp{2, 32, 224, 224};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
AbstractBasePtrList args_spec_list;
for (size_t i = 0; i < 5; ++i) {
args_spec_list.push_back(x_abstract);
}
auto kg = GetKernelGraph(g, args_spec_list);
EXPECT_NE(kg, nullptr);
auto ret = kg->get_return();
EXPECT_NE(ret, nullptr);
auto make_tuple = ret->input(1);
EXPECT_NE(make_tuple, nullptr);
auto momentum = make_tuple->cast<CNodePtr>()->input(1);
EXPECT_NE(momentum, nullptr);
EXPECT_NE(momentum->abstract(), nullptr);
EXPECT_FALSE(momentum->abstract()->isa<abstract::AbstractTuple>());
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto pass = std::make_shared<opt::AddInputToOutput>();
pass->op_finder_ = std::make_shared<MockOpFinder>();
pm->AddPass(pass);
optimizer->AddPassManager(pm);
(void)optimizer->Optimize(kg);
EXPECT_TRUE(momentum->abstract()->isa<abstract::AbstractTuple>());
}
} // namespace opt
} // namespace mindspore

View File

@ -1,39 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.ops import operations as P
ApplyMomentum = P.ApplyMomentum()
class FnDict:
def __init__(self):
self.fnDict = {}
def __call__(self, fn):
self.fnDict[fn.__name__] = fn
def __getitem__(self, name):
return self.fnDict[name]
def test_add_input_to_output(tag):
fns = FnDict()
@fns
def before(input0, input1, input2, input3, input4):
return ApplyMomentum(input0, input1, input2, input3, input4)
return fns[tag]

View File

@ -22,7 +22,7 @@ broadcast = P.Broadcast(1)
memcpy_async = Primitive('memcpy_async')
make_tuple = Primitive('make_tuple')
tuple_getitem = Primitive(Constants.kTupleGetItem)
apply_momentun = P.ApplyMomentum()
assign_add = P.AssignAdd()
control_depend = P.ControlDepend()
relu = P.ReLU()
@ -84,14 +84,14 @@ def test_insert_memcpy_async_for_hccl_op_cond3(tag):
fns = FnDict()
@fns
def before(a, b, c, d, e):
res = apply_momentun(a, b, c, d, e)
def before(a, b):
res = assign_add(a, b)
res = all_reduce(res)
return res
@fns
def after(a, b, c, d, e):
res = apply_momentun(a, b, c, d, e)
def after(a, b):
res = assign_add(a, b)
res = memcpy_async(res)
res = all_reduce(res)
return make_tuple(res)

View File

@ -48,6 +48,6 @@ def test_momentum_lossscale_fusion(tag):
@fns
def after(input0, input1, input2, input3, input4):
return make_tuple(FusedMulApplyMomentum(input0, input1, input2, input3, input4, constant))
return make_tuple(tuple_getitem(FusedMulApplyMomentum(input0, input1, input2, input3, input4, constant), 0))
return fns[tag]