- Add checks and testing for empty tensors

- cleanup work on createTensor and Tensor's constructors
This commit is contained in:
hesham 2020-07-09 14:58:12 -04:00
parent d8fcf269d6
commit adfbc891d3
78 changed files with 1730 additions and 1540 deletions

View File

@ -511,8 +511,9 @@ Status DEPipeline::FetchDataFromTensorRow(const TensorRow &row,
RETURN_IF_NOT_OK(s);
if (data != nullptr) (*row_raw_data)[column_name] = std::move(*data);
} else if (column_type == DataType::DE_STRING) {
auto buffer = tensor->GetStringsBuffer();
std::string ss(reinterpret_cast<const char *>(buffer)); // assume scalar string tensor
std::string_view sv;
RETURN_IF_NOT_OK(tensor->GetItemAt(&sv, {0})); // assume scalar string tensor
std::string ss(sv);
(*row_raw_data)[column_name] = std::move(ss);
continue;
} else {
@ -1678,12 +1679,12 @@ Status DEPipeline::ParsePadInfo(py::handle value, PadInfo *pad_info) {
if (py::isinstance<py::str>(tp[1])) {
std::string pad_val_string = tp[1].is_none() ? "" : ToString(tp[1]);
CHECK_FAIL_RETURN_UNEXPECTED(
Tensor::CreateTensor(&pad_val, std::vector<std::string>{pad_val_string}, TensorShape::CreateScalar()),
Tensor::CreateFromVector(std::vector<std::string>{pad_val_string}, TensorShape::CreateScalar(), &pad_val),
"Cannot create pad_value Tensor");
} else {
float pad_val_float = tp[1].is_none() ? 0 : ToFloat(tp[1]);
CHECK_FAIL_RETURN_UNEXPECTED(Tensor::CreateTensor(&pad_val, TensorImpl::kFlexible, TensorShape::CreateScalar(),
DataType(DataType::DE_FLOAT32)),
CHECK_FAIL_RETURN_UNEXPECTED(
Tensor::CreateEmpty(TensorShape::CreateScalar(), DataType(DataType::DE_FLOAT32), &pad_val),
"Cannot create pad_value Tensor");
pad_val->SetItemAt<float>({}, pad_val_float);
}

View File

@ -340,7 +340,7 @@ void bindTensor(py::module *m) {
(void)py::class_<Tensor, std::shared_ptr<Tensor>>(*m, "Tensor", py::buffer_protocol())
.def(py::init([](py::array arr) {
std::shared_ptr<Tensor> out;
THROW_IF_ERROR(Tensor::CreateTensor(&out, arr));
THROW_IF_ERROR(Tensor::CreateFromNpArray(arr, &out));
return out;
}))
.def_buffer([](Tensor &tensor) {
@ -364,7 +364,18 @@ void bindTensor(py::module *m) {
});
(void)py::class_<TensorShape>(*m, "TensorShape")
.def(py::init<py::list>())
.def(py::init([](const py::list &list) {
std::vector<dsize_t> list_c;
for (auto &i : list) {
if (!i.is_none()) {
list_c.push_back(i.cast<int>());
} else {
list_c.push_back(TensorShape::kDimUnknown);
}
}
TensorShape out(list_c);
return out;
}))
.def("__str__", &TensorShape::ToString)
.def("as_list", &TensorShape::AsPyList)
.def("is_known", &TensorShape::known);

View File

@ -23,18 +23,35 @@
namespace mindspore {
namespace dataset {
CVTensor::CVTensor(const TensorShape &shape, const DataType &type) : Tensor(shape, type) {
(void)this->MatInit(GetMutableBuffer(), shape_, type_, &mat_);
}
CVTensor::CVTensor(const TensorShape &shape, const DataType &type, const uchar *data) : Tensor(shape, type, data) {
(void)this->MatInit(GetMutableBuffer(), shape_, type_, &mat_);
}
CVTensor::CVTensor(std::shared_ptr<Tensor> tensor) : Tensor(std::move(*tensor)) {
(void)this->MatInit(GetMutableBuffer(), shape_, type_, &mat_);
}
Status CVTensor::CreateEmpty(const TensorShape &shape, DataType type, CVTensorPtr *out) {
const CVTensorAlloc *alloc = GlobalContext::Instance()->cv_tensor_allocator();
*out = std::allocate_shared<CVTensor>(*alloc, shape, type);
int64_t byte_size = (*out)->SizeInBytes();
// Don't allocate if we have a tensor with no elements.
if (byte_size != 0) {
RETURN_IF_NOT_OK((*out)->AllocateBuffer(byte_size));
}
return (*out)->MatInit((*out)->GetMutableBuffer(), (*out)->shape_, (*out)->type_, &(*out)->mat_);
}
Status CVTensor::CreateFromMat(const cv::Mat &mat, CVTensorPtr *out) {
TensorPtr out_tensor;
cv::Mat mat_local = mat;
// if the input Mat's memory is not continuous, copy it to one block of memory
if (!mat.isContinuous()) mat_local = mat.clone();
TensorShape shape(mat.size, mat_local.type());
DataType type = DataType::FromCVType(mat_local.type());
RETURN_IF_NOT_OK(CreateFromMemory(shape, type, mat_local.data, &out_tensor));
*out = AsCVTensor(out_tensor);
return Status::OK();
}
std::pair<std::array<int, 2>, int> CVTensor::IsValidImage(const TensorShape &shape, const DataType &type) {
std::array<int, 2> size = {1, 1};
if (shape.Rank() <= 2 || (shape.Rank() == 3 && shape[2] <= CV_CN_MAX)) {
@ -57,7 +74,8 @@ std::shared_ptr<CVTensor> CVTensor::AsCVTensor(std::shared_ptr<Tensor> t) {
if (cv_t != nullptr) {
return cv_t;
} else {
return std::make_shared<CVTensor>(t);
const CVTensorAlloc *alloc = GlobalContext::Instance()->cv_tensor_allocator();
return std::allocate_shared<CVTensor>(*alloc, t);
}
}
@ -97,5 +115,13 @@ void CVTensor::Squeeze() {
Tensor::Squeeze();
(void)this->MatInit(GetMutableBuffer(), shape_, type_, &mat_);
}
Status CVTensor::MatAtIndex(const std::vector<dsize_t> &index, cv::Mat *mat) {
uchar *start = nullptr;
TensorShape remaining({-1});
RETURN_IF_NOT_OK(this->StartAddrOfIndex(index, &start, &remaining));
RETURN_IF_NOT_OK(this->MatInit(start, remaining, type_, mat));
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -30,56 +30,60 @@
namespace mindspore {
namespace dataset {
using CVTensorPtr = std::shared_ptr<CVTensor>;
class CVTensor : public Tensor {
public:
// Create an empty CVTensor of shape `shape` and type `type`.
// @note The shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
CVTensor(const TensorShape &shape, const DataType &type);
// Inherit Tensor's constructors
using Tensor::Tensor;
// Create a CVTensor from a given buffer, shape and type.
// @note This constructor allocates a new space in the memory and copies the buffer into it.
// @note The buffer should be valid and the shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
// @param data unsigned char*, pointer to the data.
CVTensor(const TensorShape &shape, const DataType &type, const uchar *data);
// Create a CVTensor from a given CV::Mat.
// @note This constructor allocates a new space in the memory and copies the CV::Mat buffer into it.
// @param mat CV::Mat
explicit CVTensor(const cv::Mat &mat)
: CVTensor(TensorShape(mat.size, mat.type()), DataType::FromCVType(mat.type()), mat.data) {}
~CVTensor() = default;
// Static function to cast a given Tensor as CVTensor. If the input tensor is already of type CVTensor,
// this function would be treated as a no-op. Fot other tensor types, a new CVTensor is created based on the data
// provided. The Passed Tensor will be invalidated.
// @note there is no memory copying here, the buffer will be assigned to the constructed tensor.
// @param tensor
// @return CVTensor
static std::shared_ptr<CVTensor> AsCVTensor(std::shared_ptr<Tensor> tensor);
// Create a CVTensor from a given tensor. The input tensor will be invalidated (i.e., the shape and type will be
// set to unknown and the data buffer will point to null.
// @note there is no memory copying here, the buffer will be assigned to the constructed tensor.
// @param tensor
/// Create a CVTensor from a given tensor. This constructor should not be used directly, use Create* instead.
/// The input tensor will be invalidated (i.e., the shape and type will be
/// set to unknown and the data buffer will point to null.
/// \note there is no memory copying here, the buffer will be assigned to the constructed tensor.
/// \param tensor
explicit CVTensor(std::shared_ptr<Tensor> tensor);
// Getter function for the CV::Mat
// @return
/// Create CV tensor with type and shape. Items of the tensor would be uninitialized.
/// \param shape [in] shape of the output tensor
/// \param type [in] type of the output tensor
/// \param out [out] Generated tensor
/// \return Status code
static Status CreateEmpty(const TensorShape &shape, DataType type, CVTensorPtr *out);
/// Create CV tensor from cv::Mat
/// \note This constructor allocates a new space in the memory and copies the CV::Mat buffer into it.
/// \param mat [in] cv::Mat to be copied into the new tensor.
/// \param out [out] Generated tensor
/// \return Status code
static Status CreateFromMat(const cv::Mat &mat, CVTensorPtr *out);
~CVTensor() override = default;
/// Static function to cast a given Tensor as CVTensor. If the input tensor is already of type CVTensor,
/// this function would be treated as a no-op. Fot other tensor types, a new CVTensor is created based on the data
/// provided. The Passed Tensor will be invalidated.
/// \note the input tensor will be invalidated.
/// \note there is no memory copying here, the buffer will be assigned to the constructed tensor.
/// \param tensor [in]
/// \return CVTensor
static std::shared_ptr<CVTensor> AsCVTensor(std::shared_ptr<Tensor> tensor);
/// Get a reference to the CV::Mat
/// \return a reference to the internal CV::Mat
cv::Mat mat() const { return mat_; }
// Static function to check if the passed information (shape and type) can be treated as a valid description
// of an image in OpenCV. Moreover, it returns OpenCV shape and type
// For example, if the shape is <512,512,3> and type is DE_UINT8, the output would be [512,512] and CV_8UC3.
// In case of invalid shape or type, the function will return pair<null,0>
// @param shape TensorShape
// @param type DataType
// @return std::pair of OpenCV shape and type
std::pair<std::array<int, 2>, int> IsValidImage(const TensorShape &shape, const DataType &type);
/// Get a copy of the CV::Mat
/// \return a copy of internal CV::Mat
cv::Mat matCopy() const { return mat_.clone(); }
/// Static function to check if the passed information (shape and type) can be treated as a valid description
/// of an image in OpenCV. Moreover, it returns OpenCV shape and type
/// For example, if the shape is <512,512,3> and type is DE_UINT8, the output would be [512,512] and CV_8UC3.
/// In case of invalid shape or type, the function will return pair<null,0>
/// \param shape [in] TensorShape
/// \param type [in] DataType
/// \return std::pair of OpenCV shape and type
static std::pair<std::array<int, 2>, int> IsValidImage(const TensorShape &shape, const DataType &type);
Status Reshape(const TensorShape &shape) override;
@ -87,18 +91,19 @@ class CVTensor : public Tensor {
void Squeeze() override;
Status Mat(const std::vector<dsize_t> &index, cv::Mat *mat) {
uchar *start = nullptr;
TensorShape remaining({-1});
RETURN_IF_NOT_OK(this->StartAddrOfIndex(index, &start, &remaining));
RETURN_IF_NOT_OK(this->MatInit(start, remaining, type_, mat));
return Status::OK();
}
Status MatAtIndex(const std::vector<dsize_t> &index, cv::Mat *mat);
private:
/// Opencv Mat object wrapping the raw data of the tensor.
/// Modifying the content of the matrix, modifies the tensor.
cv::Mat mat_;
// Initialize CV::Mat with the data_, shape_ and type_
/// Create cv::Mat from data, TensorShape and DataType
/// \param data [in] Pointer to the data in memory.
/// \param shape [in] Shape of the tensor.
/// \param type [in] Type of the tensor.
/// \param mat [out] cv::Mat initialized with the provided data.
/// \return Status code
Status MatInit(uchar *data, const TensorShape &shape, const DataType &type, cv::Mat *mat);
};
} // namespace dataset

View File

@ -284,6 +284,11 @@ inline DataType DataType::FromCType<std::string_view>() {
return DataType(DataType::DE_STRING);
}
template <>
inline DataType DataType::FromCType<std::string>() {
return DataType(DataType::DE_STRING);
}
template <>
inline bool DataType::IsLooselyCompatible<bool>() const {
return type_ == DataType::DE_BOOL;

View File

@ -59,49 +59,11 @@ Tensor::Tensor(const TensorShape &shape, const DataType &type) : shape_(shape),
data_allocator_ = std::make_unique<Allocator<unsigned char>>(global_pool);
}
Tensor::Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data) : Tensor(shape, type) {
if (type.IsNumeric()) {
// If the data pointer was given, then we can also populate the tensor with data
if (data != nullptr) {
// Given the shape/type of this tensor, compute the data size and copy in the input bytes.
int64_t byte_size = this->SizeInBytes();
Status s = this->AllocateBuffer(byte_size); // Allocates data_ inside itself
if (s.IsOk() && data_ != nullptr) {
int ret_code = memcpy_s(data_, byte_size, data, byte_size);
if (ret_code != 0) {
MS_LOG(ERROR) << "Failed to copy data into Tensor!";
}
} else {
MS_LOG(ERROR) << "Failed to create memory for Tensor!";
}
}
} else {
MS_LOG(ERROR) << "Type should be numeric to use this constructor.";
}
}
Tensor::Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data, const dsize_t &length)
: Tensor(shape, type) {
// If the data pointer was given, then we can also populate the tensor with data
if (data != nullptr) {
// Allocates data_ inside itself
Status s = AllocateBuffer(length);
if (s.IsError()) {
MS_LOG(ERROR) << "Failed to create memory for Tensor!";
}
if (data_ != nullptr) {
int ret_code = memcpy_s(data_, length, data, length);
if (ret_code != 0) {
MS_LOG(ERROR) << "Failed to copy data into Tensor!";
}
}
}
}
Tensor::Tensor(Tensor &&other) noexcept
: shape_(other.shape()),
type_(other.type()),
data_(other.GetMutableBuffer()),
data_end_(other.data_end_),
data_allocator_(std::move(other.data_allocator_)) {
other.Invalidate();
}
@ -117,118 +79,61 @@ Tensor &Tensor::operator=(Tensor &&other) noexcept {
}
return *this;
}
Tensor::Tensor(const std::vector<std::string> &strings, const TensorShape &shape)
: Tensor(TensorShape({static_cast<dsize_t>(strings.size())}), DataType(DataType::DE_STRING)) {
auto length_sum = [](dsize_t sum, const std::string &s) { return s.length() + sum; };
dsize_t total_length = std::accumulate(strings.begin(), strings.end(), 0, length_sum);
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize + 1) * shape_.NumOfElements() + kOffsetSize + total_length;
data_ = data_allocator_->allocate(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>(data_);
uchar *buf = GetStringsBuffer();
offset_t offset = buf - data_; // the first string will start here
uint32_t i = 0;
for (const auto &str : strings) {
// insert the start index of the string.
offset_arr[i++] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s(data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) MS_LOG(ERROR) << "Cannot copy string into Tensor";
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
// length[last_element] = offset_arr[last_element + 1] - offset_arr[last_element]
offset_arr[i] = offset;
this->data_end_ = data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
if (shape.known()) Tensor::Reshape(shape);
}
Tensor::Tensor(const dataengine::BytesList &bytes_list, const TensorShape &shape)
: Tensor(TensorShape({static_cast<dsize_t>(bytes_list.value_size())}), DataType(DataType::DE_STRING)) {
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize)*shape_.NumOfElements() + kOffsetSize + bytes_list.ByteSizeLong();
data_ = data_allocator_->allocate(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>(data_);
uchar *buf = GetStringsBuffer();
offset_t offset = buf - data_; // the first string will start here
uint32_t i = 0;
for (; i < bytes_list.value_size(); i++) {
const std::string &str = bytes_list.value(i);
// insert the start index of the string.
offset_arr[i] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s(data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) {
MS_LOG(ERROR) << "Cannot copy string into Tensor";
}
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
// length[last_element] = offset_arr[last_element + 1] - offset_arr[last_element]
offset_arr[i] = offset;
data_end_ = data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
if (shape.known()) Tensor::Reshape(shape);
}
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, TensorImpl tensor_impl, const TensorShape &shape,
DataType type, const unsigned char *data) {
if (!shape.known()) {
RETURN_STATUS_UNEXPECTED("Invalid shape.");
}
if (type == DataType::DE_UNKNOWN) {
RETURN_STATUS_UNEXPECTED("Invalid data type.");
}
switch (tensor_impl) {
case TensorImpl::kFlexible: {
// The flex tensor is really just the base class tensor implementation
Status Tensor::CreateEmpty(const TensorShape &shape, const DataType &type, TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(shape.known(), "Invalid shape.");
CHECK_FAIL_RETURN_UNEXPECTED(type != DataType::DE_UNKNOWN, "Invalid data type.");
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*ptr = std::allocate_shared<Tensor>(*alloc, shape, type, data);
break;
*out = std::allocate_shared<Tensor>(*alloc, shape, type);
// if it's a string tensor and it has no elements, Just initialize the shape and type.
if (!type.IsNumeric() && shape.NumOfElements() == 0) {
return Status::OK();
}
case TensorImpl::kCv: {
const CVTensorAlloc *alloc = GlobalContext::Instance()->cv_tensor_allocator();
*ptr = std::allocate_shared<CVTensor>(*alloc, shape, type, data);
break;
CHECK_FAIL_RETURN_UNEXPECTED(type.IsNumeric(), "Number of elements is not 0. The type should be numeric.");
int64_t byte_size = (*out)->SizeInBytes();
// Don't allocate if we have a tensor with no elements.
if (byte_size != 0) {
RETURN_IF_NOT_OK((*out)->AllocateBuffer(byte_size));
}
default: {
std::string err_msg("Invalid tensor implementation type.");
RETURN_STATUS_UNEXPECTED(err_msg);
return Status::OK();
}
Status Tensor::CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src, TensorPtr *out) {
RETURN_IF_NOT_OK(CreateEmpty(shape, type, out));
if (src != nullptr) {
// Given the shape/type of this tensor, compute the data size and copy in the input bytes.
int64_t byte_size = (*out)->SizeInBytes();
int ret_code = memcpy_s((*out)->data_, byte_size, src, byte_size);
CHECK_FAIL_RETURN_UNEXPECTED(ret_code == 0, "Failed to copy data into tensor.");
}
return Status::OK();
}
Status Tensor::CreateFromMemory(const TensorShape &shape, const DataType &type, const unsigned char *src,
const dsize_t &length, TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(src != nullptr, "Pointer to source data is null.");
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, shape, type);
if (type.IsNumeric()) {
dsize_t calculated_length = (*out)->SizeInBytes();
CHECK_FAIL_RETURN_UNEXPECTED(calculated_length == length, "Length of source data does not match the shape.");
} else {
// min_length is the length of a tensor with empty strings
// min_length = the number of bytes needed to store the offsets + 1 byte for each element
dsize_t min_length = (shape.NumOfElements() + 1) * kOffsetSize + shape.NumOfElements();
CHECK_FAIL_RETURN_UNEXPECTED(min_length <= length, "Length of source data does not match the shape.");
}
return Status::OK(); // returns base-class shared_ptr
RETURN_IF_NOT_OK((*out)->AllocateBuffer(length));
int ret_code = memcpy_s((*out)->data_, length, src, length);
CHECK_FAIL_RETURN_UNEXPECTED(ret_code == 0, "Failed to copy data into tensor.");
return Status::OK();
}
#ifdef ENABLE_PYTHON
Status Tensor::CreateTensorFromNumpyString(std::shared_ptr<Tensor> *ptr, py::array arr) {
Status Tensor::CreateFromNpString(py::array arr, std::shared_ptr<Tensor> *out) {
std::vector<dsize_t> shape;
for (dsize_t i = 0; i < arr.ndim(); i++) {
shape.push_back(static_cast<dsize_t>(arr.shape()[i]));
@ -244,34 +149,38 @@ Status Tensor::CreateTensorFromNumpyString(std::shared_ptr<Tensor> *ptr, py::arr
arr.resize(shape); // resize arr back to the original shape
return CreateTensor(ptr, strings, TensorShape{shape});
return CreateFromVector(strings, TensorShape{shape}, out);
}
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, py::array arr) {
Status Tensor::CreateFromNpArray(const py::array &arr, std::shared_ptr<Tensor> *out) {
if (DataType::FromNpArray(arr) == DataType::DE_STRING) {
return CreateTensorFromNumpyString(ptr, arr);
return CreateFromNpString(arr, out);
}
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*ptr = std::allocate_shared<Tensor>(*alloc, TensorShape({}), DataType(DataType::DE_UNKNOWN));
*out = std::allocate_shared<Tensor>(*alloc, TensorShape::CreateScalar(), DataType(DataType::DE_UNKNOWN));
std::vector<dsize_t> shape;
for (dsize_t i = 0; i < arr.ndim(); i++) {
shape.push_back(static_cast<dsize_t>(arr.shape()[i]));
}
(*ptr)->shape_ = TensorShape(shape);
(*ptr)->type_ = DataType::FromNpArray(arr);
if (!(*ptr)->shape_.known()) RETURN_STATUS_UNEXPECTED("Invalid shape.");
(*out)->shape_ = TensorShape(shape);
(*out)->type_ = DataType::FromNpArray(arr);
if (!(*out)->shape_.known()) RETURN_STATUS_UNEXPECTED("Invalid shape.");
if ((*ptr)->type_ == DataType::DE_UNKNOWN) RETURN_STATUS_UNEXPECTED("Invalid data type.");
if ((*out)->type_ == DataType::DE_UNKNOWN) RETURN_STATUS_UNEXPECTED("Invalid data type.");
std::shared_ptr<MemoryPool> global_pool = GlobalContext::Instance()->mem_pool();
(*ptr)->data_allocator_ = std::make_unique<Allocator<unsigned char>>(global_pool);
int64_t byte_size = (*ptr)->SizeInBytes();
RETURN_IF_NOT_OK((*ptr)->AllocateBuffer(byte_size));
(*out)->data_allocator_ = std::make_unique<Allocator<unsigned char>>(global_pool);
int64_t byte_size = (*out)->SizeInBytes();
if (byte_size == 0) {
return Status::OK();
}
RETURN_IF_NOT_OK((*out)->AllocateBuffer(byte_size));
unsigned char *data = static_cast<unsigned char *>(arr.request().ptr);
if ((*ptr)->data_ == nullptr) {
if ((*out)->data_ == nullptr) {
RETURN_STATUS_UNEXPECTED("Failed to create memory for Tensor.");
}
@ -282,61 +191,89 @@ Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, py::array arr) {
// check if strides are contiguous
bool is_strided = false;
dsize_t count = (*ptr)->shape_.NumOfElements();
dsize_t count = (*out)->shape_.NumOfElements();
for (size_t i = 0; i < shape.size(); i++) {
count /= shape[i];
if (strides[i] != (*ptr)->type_.SizeInBytes() * count) {
if (strides[i] != (*out)->type_.SizeInBytes() * count) {
is_strided = true;
break;
}
}
if (is_strided) {
RETURN_IF_NOT_OK(CopyStridedArray((*ptr)->data_, data, shape, strides, (*ptr)->type_.SizeInBytes()));
RETURN_IF_NOT_OK(CopyStridedArray((*out)->data_, data, shape, strides, (*out)->type_.SizeInBytes()));
} else {
int ret_code = memcpy_s((*ptr)->data_, byte_size, data, byte_size);
int ret_code = memcpy_s((*out)->data_, byte_size, data, byte_size);
if (ret_code != 0) {
RETURN_STATUS_UNEXPECTED("Failed to copy data into Tensor.");
}
}
return Status::OK(); // returns base-class shared_ptr
return Status::OK();
}
#endif
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, const std::vector<std::string> &strings,
const TensorShape &shape) {
Status Tensor::CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape, TensorPtr *out) {
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*ptr = std::allocate_shared<Tensor>(*alloc, strings, shape);
*out = std::allocate_shared<Tensor>(*alloc, TensorShape({static_cast<dsize_t>(bytes_list.value_size())}),
DataType(DataType::DE_STRING));
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize) * (*out)->shape_.NumOfElements() + kOffsetSize + bytes_list.ByteSizeLong();
(*out)->data_ = (*out)->data_allocator_->allocate(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>((*out)->data_);
uchar *buf = (*out)->GetStringsBuffer();
offset_t offset = buf - (*out)->data_; // the first string will start here
uint32_t i = 0;
for (; i < bytes_list.value_size(); i++) {
const std::string &str = bytes_list.value(i);
// insert the start index of the string.
offset_arr[i] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s((*out)->data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) {
MS_LOG(ERROR) << "Cannot copy string into Tensor";
}
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
// length[last_element] = offset_arr[last_element + 1] - offset_arr[last_element]
offset_arr[i] = offset;
(*out)->data_end_ = (*out)->data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
(*out)->Reshape(shape);
return Status::OK();
}
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape) {
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*ptr = std::allocate_shared<Tensor>(*alloc, bytes_list, shape);
return Status::OK();
}
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, const std::string &file_path) {
Status Tensor::CreateFromFile(const std::string &path, std::shared_ptr<Tensor> *out) {
std::ifstream fs;
fs.open(file_path, std::ios::binary | std::ios::in);
CHECK_FAIL_RETURN_UNEXPECTED(!fs.fail(), "Fail to open file: " + file_path);
fs.open(path, std::ios::binary | std::ios::in);
CHECK_FAIL_RETURN_UNEXPECTED(!fs.fail(), "Fail to open file: " + path);
int64_t num_bytes = fs.seekg(0, std::ios::end).tellg();
CHECK_FAIL_RETURN_UNEXPECTED(fs.seekg(0, std::ios::beg).good(), "Fail to find size of file");
RETURN_IF_NOT_OK(
Tensor::CreateTensor(ptr, TensorImpl::kFlexible, TensorShape{num_bytes}, DataType(DataType::DE_UINT8)));
int64_t written_bytes = fs.read(reinterpret_cast<char *>((*ptr)->GetMutableBuffer()), num_bytes).gcount();
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape{num_bytes}, DataType(DataType::DE_UINT8), out));
int64_t written_bytes = fs.read(reinterpret_cast<char *>((*out)->GetMutableBuffer()), num_bytes).gcount();
CHECK_FAIL_RETURN_UNEXPECTED(written_bytes == num_bytes && fs.good(), "Error in writing to tensor");
fs.close();
return Status::OK();
}
Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape, const DataType &type, dsize_t pad_size) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(ptr, TensorImpl::kFlexible, shape, type));
Status Tensor::CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape,
const DataType &type, dsize_t pad_size, TensorPtr *out) {
RETURN_IF_NOT_OK(Tensor::CreateEmpty(shape, type, out));
unsigned char *current_tensor_addr = (*ptr)->GetMutableBuffer();
unsigned char *current_tensor_addr = (*out)->GetMutableBuffer();
int64_t tensor_bytes_remaining = bytes_list.value_size() * pad_size;
for (int i = 0; i < bytes_list.value_size(); i++) {
@ -368,7 +305,7 @@ Status Tensor::CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::Byte
// Here we convert array C to array A, by memcpy index by index (Note that not all elements in C is copied)
Status Tensor::CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size) {
dsize_t size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<dsize_t>());
dsize_t size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<>());
for (dsize_t i = 0; i < size; ++i) {
dsize_t offset = 0;
dsize_t count = i;
@ -429,29 +366,29 @@ void Tensor::PrintItemAt(const std::vector<dsize_t> &index, std::ostream &out) c
MS_ASSERT(data_);
switch (type_.value()) {
CASE_PRINT_HEX(DataType::DE_BOOL, bool);
CASE_PRINT_HEX(DataType::DE_BOOL, bool)
CASE_PRINT_HEX(DataType::DE_INT8, int8_t);
CASE_PRINT_HEX(DataType::DE_INT8, int8_t)
CASE_PRINT_HEX(DataType::DE_UINT8, uint8_t);
CASE_PRINT_HEX(DataType::DE_UINT8, uint8_t)
CASE_PRINT(DataType::DE_INT16, int16_t);
CASE_PRINT(DataType::DE_INT16, int16_t)
CASE_PRINT(DataType::DE_UINT16, uint16_t);
CASE_PRINT(DataType::DE_UINT16, uint16_t)
CASE_PRINT(DataType::DE_INT32, int32_t);
CASE_PRINT(DataType::DE_INT32, int32_t)
CASE_PRINT(DataType::DE_UINT32, uint32_t);
CASE_PRINT(DataType::DE_UINT32, uint32_t)
CASE_PRINT(DataType::DE_INT64, int64_t);
CASE_PRINT(DataType::DE_INT64, int64_t)
CASE_PRINT(DataType::DE_UINT64, uint64_t);
CASE_PRINT(DataType::DE_UINT64, uint64_t)
CASE_PRINT(DataType::DE_FLOAT16, float16);
CASE_PRINT(DataType::DE_FLOAT16, float16)
CASE_PRINT(DataType::DE_FLOAT32, float);
CASE_PRINT(DataType::DE_FLOAT32, float)
CASE_PRINT(DataType::DE_FLOAT64, double);
CASE_PRINT(DataType::DE_FLOAT64, double)
case DataType::DE_STRING: {
std::string_view o{""};
@ -501,50 +438,14 @@ void Tensor::Print(std::ostream &out) const {
}
}
Status Tensor::AllocateBuffer(const dsize_t &length) {
RETURN_UNEXPECTED_IF_NULL(data_allocator_);
if (data_ == nullptr) {
if (data_allocator_ != nullptr) {
data_ = data_allocator_->allocate(length);
RETURN_UNEXPECTED_IF_NULL(data_);
CHECK_FAIL_RETURN_UNEXPECTED(data_ != nullptr, "Failed to allocate memory for tensor.");
data_end_ = data_ + length;
} else {
data_ = static_cast<unsigned char *>(malloc(length));
data_end_ = data_ + length;
RETURN_UNEXPECTED_IF_NULL(data_);
}
}
return Status::OK();
}
const unsigned char *Tensor::GetBuffer() const {
// This version cannot modify anything. data_ could possibly be null.
return data_;
}
// check for empty
bool Tensor::HasData() const {
if (data_ == nullptr) {
return true;
} else {
return false;
}
}
unsigned char *Tensor::GetMutableBuffer() {
if (!shape_.known() || type_ == DataType::DE_UNKNOWN) {
return nullptr;
}
// If the data area is already created, return the pointer to it
if (data_ != nullptr) {
return data_;
} else {
// If the data area is not created, then identify the memory size based
// on the shape and type and allocate it.
if (this->AllocateBuffer(this->SizeInBytes()).IsOk()) {
return data_;
} else {
return nullptr;
}
}
}
Status Tensor::Reshape(const TensorShape &shape) {
if (shape.NumOfElements() == shape_.NumOfElements()) {
@ -628,7 +529,7 @@ Status Tensor::InsertTensor(const std::vector<dsize_t> &ind, const std::shared_p
err_msg += (ind.size() + tensor->Rank() != this->Rank()) ? "[Tensor] incorrect index\n" : "";
err_msg += tensor->type().SizeInBytes() != this->type().SizeInBytes() ? "[Tensor] incorrect datatype\n" : "";
uchar *start_addr_of_ind = nullptr;
TensorShape remaining_shape({-1});
TensorShape remaining_shape = TensorShape::CreateUnknownRankShape();
err_msg += (!StartAddrOfIndex(ind, &start_addr_of_ind, &remaining_shape).IsOk()) ? "[Tensor] incorrect index\n" : "";
err_msg += !(remaining_shape == tensor->shape()) ? "[Tensor] memory error\n" : "";
if (!err_msg.empty()) {
@ -697,7 +598,7 @@ Status Tensor::ExpandDim(const dsize_t &axis) {
return Status::OK();
}
std::vector<dsize_t> Tensor::Strides() {
std::vector<dsize_t> Tensor::Strides() const {
std::vector<dsize_t> strides = shape_.Strides();
uint8_t size = type_.SizeInBytes();
std::transform(strides.begin(), strides.end(), strides.begin(), [&size](const auto &c) { return c * size; });
@ -765,7 +666,6 @@ Status Tensor::GetItemAt(std::string_view *o, const std::vector<dsize_t> &index)
#ifdef ENABLE_PYTHON
// return data as numpy, should return status
Status Tensor::GetDataAsNumpy(py::array *data) {
RETURN_UNEXPECTED_IF_NULL(data_);
RETURN_UNEXPECTED_IF_NULL(data);
if (type_ == DataType::DE_BOOL) {
*data = py::array_t<bool>(shape_.AsVector(), reinterpret_cast<bool *>(data_));
@ -974,7 +874,9 @@ Status Tensor::CopyLastDimAt(const std::shared_ptr<Tensor> &src, const std::vect
}
Status Tensor::Slice(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices) {
CHECK_FAIL_RETURN_UNEXPECTED(shape_.Rank() == 1, "Currently Slice work with rank 1 tensors only.");
CHECK_FAIL_RETURN_UNEXPECTED(!indices.empty(), "Indices are empty, generated tensor would be empty.");
if (indices.empty()) {
return CreateEmpty(TensorShape({0}), type_, out);
}
if (type_.IsNumeric()) {
return SliceNumeric(out, indices);
} else {
@ -982,8 +884,7 @@ Status Tensor::Slice(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &i
}
}
Status Tensor::SliceNumeric(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices) {
RETURN_IF_NOT_OK(
CreateTensor(out, TensorImpl::kFlexible, TensorShape({static_cast<dsize_t>(indices.size())}), type_));
RETURN_IF_NOT_OK(CreateEmpty(TensorShape({static_cast<dsize_t>(indices.size())}), type_, out));
(*out)->GetMutableBuffer();
dsize_t out_index = 0;
dsize_t dim_length = shape_[0];
@ -1027,7 +928,7 @@ Status Tensor::SliceString(std::shared_ptr<Tensor> *out, const std::vector<dsize
GetItemAt(&sv, {cur_index});
strings.emplace_back(sv);
}
return CreateTensor(out, strings);
return CreateFromVector(strings, TensorShape({static_cast<dsize_t>(strings.size())}), out);
}
} // namespace dataset

View File

@ -33,6 +33,7 @@
#include "pybind11/stl.h"
#endif
#include "common/utils.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/data_type.h"
#include "minddata/dataset/core/tensor_shape.h"
@ -50,170 +51,155 @@ class Allocator;
using CharAllocPtr = std::unique_ptr<Allocator<unsigned char>>;
using TensorAllocPtr = std::shared_ptr<Allocator<Tensor>>; // An allocator shared_ptr for Tensors
using offset_t = uint32_t; // type of offset values to store strings locations
using TensorPtr = std::shared_ptr<Tensor>;
class Tensor {
public:
Tensor() = delete;
// Create a new tensor, does not internally allocate storage. This constructor is protected, use CreateTensor.
// @note The shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
Tensor(const TensorShape &shape, const DataType &type);
// Create a new tensor, allocates storage and copies in data. This constructor is protected, use CreateTensor.
// @note The buffer should be valid and the shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
// @param data unsigned char*, pointer to the data.
Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data);
Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data, const dsize_t &length);
Tensor(const Tensor &other) = delete;
Tensor &operator=(const Tensor &other) = delete;
/// Create a tensor using shape and type. This constructor should not be used directly, use CreateFromTensor instead
/// \note The shape and type information should be known and valid
/// \note The constructor does not allocate data
/// \param shape TensorShape
/// \param type DataType
Tensor(const TensorShape &shape, const DataType &type);
/// Move constructor
/// \param other Tensor to be moved
Tensor(Tensor &&other) noexcept;
/// Move assigment operator
/// \param other Tensor to be moved
Tensor &operator=(Tensor &&other) noexcept;
Status AllocateBuffer(const dsize_t &length);
/// Create a numeric tensor with type and shape. Items of the tensor would be uninitialized.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateEmpty(const TensorShape &shape, const DataType &type, TensorPtr *out);
// type of offest values to store strings information
using offset_t = uint32_t;
// const of the size of the offset variable
static constexpr uint8_t kOffsetSize = sizeof(offset_t);
// Tensor base class which holds the data in an unsigned char* buffer.
/// Create a numeric tensor from a pointer in memory. Length of the source data is determined from the shape and type.
/// Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src, TensorPtr *out);
// Construct a scalar string Tensor
explicit Tensor(const std::string &str) : Tensor(std::vector<std::string>{str}, TensorShape::CreateScalar()) {}
/// Create a tensor from a pointer in memory and length. Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[in] length length of the src data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src,
const dsize_t &length, TensorPtr *out);
// Construct a tensor from a list of strings. Reshape the tensor with `shape` if given, otherwise assume the shape is
// the size of the vector `strings`.
// The memory layout of a Tensor of strings consists of the Offset_array followed by the strings.
// Thr offset array will store one extra value to find the length of the last string.
// OFFSET1, OFFSET2, ..., OFFSETn+1, STRING1, STRING2, ..., STRINGn
// The value of each offset is the start index of the corresponding string
// Offsets is of type offest_t
// strings will ne null-terminated
// example: Tensor(['abc', 'de'], shape={2}, type=DE_STRING)
// |----------------------------------------------------------------|
// | OFFSET ARRAY | STRINGS |
// | bytes 0-3 | bytes 3-6 | bytes 7-10 | bytes 11-14 | bytes 15-17 |
// | 11 | 15 | 18 | abc\0 | de\0 |
// |----------------------------------------------------------------|
explicit Tensor(const std::vector<std::string> &strings,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
// Same as Tensor(vector<string>) but the input is protobuf bytelist
explicit Tensor(const dataengine::BytesList &bytes_list,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
// A static factory method to create the given flavour of derived Tensor
// Returns the base class reference for the Tensor.
// @param ptr output argument to hold the created Tensor of given tensor_impl
// @param tensor_impl - which implementation of Tensor
// @param shape - shape of the tensor
// @param type - datatype of the tensor
// @param data - data to be copied to Tensor new allocation
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *, TensorImpl tensor_impl, const TensorShape &shape, DataType type,
const unsigned char *data = nullptr);
// Create a copy of the input tensor
// @param out [out] output tensor to be generated
// @param in [in] orginal tensor to be copied
// @return Status
static Status CreateTensor(std::shared_ptr<Tensor> *out, const std::shared_ptr<Tensor> &in) {
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, in->shape(), in->type(), in->GetBuffer(), in->SizeInBytes());
return Status::OK();
/// Create a copy of the input tensor
/// \param[in] in original tensor to be copied
/// \param[out] out output tensor to be generated
/// \return Status
static Status CreateFromTensor(const TensorPtr &in, TensorPtr *out) {
return CreateFromMemory(in->shape(), in->type(), in->GetBuffer(), in->SizeInBytes(), out);
}
#ifdef ENABLE_PYTHON
// A static factory method to create a Tensor from a given py::array.
// @param ptr output argument to hold the created Tensor
// @param arr py::array
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, py::array arr);
// Helper function to create a tensor from Numpy of strings
static Status CreateTensorFromNumpyString(std::shared_ptr<Tensor> *ptr, py::array arr);
/// Create a Tensor from a given py::array
/// \param[in] arr py::array
/// \param[out] out Created tensor
/// \return Status Code
static Status CreateFromNpArray(const py::array &arr, TensorPtr *out);
#endif
// A static factory method to create a Tensor from a given list of strings.
// @param ptr output argument to hold the created Tensor
// @param strings elements of the tensor
// @param shape shape of the tensor
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::vector<std::string> &strings,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
/// Create a tensor of type DE_STRING from a BytesList.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the outout tensor
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape, TensorPtr *out);
// create tensor from protobuf bytelist with strings
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape);
/// Create a tensor of type UINT8 or INT8 from a BytesList.
/// The tensor will be padded with ' ' to reach the required pad_size.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the output tensor
/// \param[in] type type of created tensor. Should be DE_UINT8 or INT8
/// \param[in] pad_size The size of the tensor after padding
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape,
const DataType &type, dsize_t pad_size, TensorPtr *out);
// A static factory method to create a Tensor from a given list of numbers.
// @param ptr output argument to hold the created Tensor
// @param items elements of the tensor
// @param shape shape of the tensor
// @return Status Code
/// Create a Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::vector<T> &items,
const TensorShape &shape_req = TensorShape::CreateUnknownRankShape()) {
static Status CreateFromVector(const std::vector<T> &items, const TensorShape &shape, TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
DataType type = DataType::FromCType<T>();
// if items is empty, items_ptr would be nullptr. CreateFromMemory will handle this case.
auto items_ptr = reinterpret_cast<const uchar *>(&items[0]);
TensorShape shape = shape_req;
if (!shape.known()) {
shape = TensorShape({static_cast<dsize_t>(items.size())});
}
return CreateTensor(ptr, TensorImpl::kFlexible, shape, type, items_ptr);
return CreateFromMemory(shape, type, items_ptr, out);
}
// A static factory method to create a Tensor from a given number.
// @param ptr output argument to hold the created Tensor
// @param item value
// @return Status Code
/// Create a 1D Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const T &item) {
return CreateTensor<T>(ptr, {item}, TensorShape::CreateScalar());
static Status CreateFromVector(const std::vector<T> &items, TensorPtr *out) {
return CreateFromVector(items, TensorShape({static_cast<dsize_t>(items.size())}), out);
}
// Create tensor from protobuf bytelist with uint8 or int8 types
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape, const DataType &type, dsize_t pad_size);
/// Create a numeric scalar Tensor from the given value.
/// \tparam T type of value
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <typename T>
static Status CreateScalar(const T &item, TensorPtr *out) {
DataType type = DataType::FromCType<T>();
auto item_ptr = reinterpret_cast<const uchar *>(&item);
return CreateFromMemory(TensorShape::CreateScalar(), type, item_ptr, out);
}
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::string &path);
/// Create a tensor from a binary file on disk.
/// \param[in] path file to be read
/// \param[out] out Created Tensor
/// \return Status code
static Status CreateFromFile(const std::string &path, TensorPtr *out);
// Copy raw data of a array based on shape and strides to the destination pointer
// @param dst Pointer to the destination array where the content is to be copied
// @param src Pointer to the source of strided array to be copied
// @param shape - shape of the source array
// @param strides - strides of the source array
// @param type_size - number of bytes needed to store one array element's type
// @return Status Code
static Status CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size);
// Release the memory using the allocator
/// Destruct the tensor and release the memory using the allocator
virtual ~Tensor();
// compare the tensor shape and data
/// Equality operator. compares tensor shape, type and data
/// \param[in] rhs Tensor to be compared with
/// \return bool
bool operator==(const Tensor &rhs) const;
bool operator!=(const Tensor &rhs) const { return !((*this) == rhs); }
// Get item located at `index`, caller needs to provide the type.
// @tparam T
// @param index vector<dsize_t>
// @return return the item specified at index
/// Get item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return the item specified at index
template <typename T>
Status GetItemAt(T *o, const std::vector<dsize_t> &index) const;
// Get string located at `index`.
// @param index vector<dsize_t>
// @return return std::string_view specified at index
/// Get string located at `index`.
/// \param[in] index vector<dsize_t>
/// \return return std::string_view specified at index
Status GetItemAt(std::string_view *o, const std::vector<dsize_t> &index) const;
template <typename T>
@ -225,22 +211,21 @@ class Tensor {
template <typename T>
Status GetFloatAt(T *o, const std::vector<dsize_t> &index) const;
// set item at location specified by index
// @tparam `T`
// @param index
// @param value of type `T`
/// set item at location specified by index
/// \tparam `T`
/// \param[in] index
/// \param[in] value of type `T`
template <typename T>
Status SetItemAt(const std::vector<dsize_t> &index, const T &value) {
RETURN_IF_NOT_OK(AllocateBuffer(SizeInBytes()));
T *ptr = nullptr;
RETURN_IF_NOT_OK(GetItemPtr<T>(&ptr, index));
*ptr = value;
return Status::OK();
}
// set string item at location specified by index
// @param index
// @param value of type std::string
/// set string item at location specified by index
/// \param[in] index
/// \param[in] value of type std::string
Status SetItemAt(const std::vector<dsize_t> &index, const std::string &value) {
RETURN_UNEXPECTED_IF_NULL(data_);
uchar *ptr = nullptr;
@ -253,7 +238,8 @@ class Tensor {
return Status::OK();
}
// fill tensor with Zeros. Does not support strings.
/// fill tensor with Zeros. Does not support strings.
Status Zero() {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use Zero on tensor of strings..");
dsize_t size = SizeInBytes();
@ -262,13 +248,12 @@ class Tensor {
return Status::OK();
}
// Fill all elements in the Tensor with the given value of type `T`. Does not support strings.
// @tparam T
// @param value
/// Fill all elements in the Tensor with the given value of type `T`. Does not support strings.
/// \tparam T
/// \param value[in]
template <typename T>
Status Fill(const T &value) {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use fill on tensor of strings.");
RETURN_IF_NOT_OK(AllocateBuffer(SizeInBytes()));
int64_t cellSize = type_.SizeInBytes();
if ((data_ != nullptr) && type_.IsCompatible<T>()) {
for (dsize_t i = 0; i < Size(); i++) {
@ -283,91 +268,86 @@ class Tensor {
}
}
// Getter function for shape
// @return
/// Getter function for shape
/// \return
const TensorShape &shape() const { return shape_; }
/// Check if tensor has data
/// \return bool - true if tensor is empty
bool HasData() const;
bool HasData() const { return data_ != nullptr; }
// Reshape the tensor. The given shape should have the same number of elements in the Tensor
// @param shape
/// Reshape the tensor. The given shape should have the same number of elements in the Tensor
/// \param shape
virtual Status Reshape(const TensorShape &shape);
// @return number of elements in this tensor
/// \return number of elements in this tensor
dsize_t Size() const { return shape().NumOfElements(); }
// @return the number of bytes this tensor is needs
/// \return the number of bytes this tensor is needs
dsize_t SizeInBytes() const {
if (data_end_ == nullptr) return type_.SizeInBytes() * shape_.NumOfElements();
return data_end_ - data_;
}
// @return the rank of the tensor
/// \return the rank of the tensor
dsize_t Rank() const { return shape().Rank(); }
// Get the starting memory address as a constant for the data of the tensor. This potentially
// drives an allocation if the data area.
// @return const unsigned char*
const unsigned char *GetBuffer() const;
/// Get the starting memory address as a constant for the data of the tensor. This potentially
/// drives an allocation if the data area.
/// \return const unsigned char*
const unsigned char *GetBuffer() const { return data_; }
// Skip the offsets and returns the start of the buffer where the real strings is stored. Caller needs to check if the
// tensor's type is a string, otherwise undefined address would be returned.
// @return address of the first string of the tensor.
uchar *GetStringsBuffer() const { return data_ + kOffsetSize * shape_.NumOfElements() + kOffsetSize; }
// Getter of the type
// @return
/// Getter of the type
/// \return
DataType type() const { return type_; }
// Provide stream operator for displaying it
// @param output stream
// @param so the Tensor object to be printed
// @return output stream
/// Provide stream operator for displaying it
/// \param output stream
/// \param so the Tensor object to be printed
/// \return output stream
friend std::ostream &operator<<(std::ostream &out, const Tensor &so) {
so.Print(out);
return out;
}
// Invalidate this Tensor by setting the type and shape to unknown and MData to null.
// Calling this method will make the Tensor and its data inaccessible, use it with caution.
/// Invalidate this Tensor by setting the type and shape to unknown and MData to null.
/// Calling this method will make the Tensor and its data inaccessible, use it with caution.
void Invalidate();
// Copy input tensor into self at the location index.
// Index is a vector of axises which can be incomplete:
// Ex: shape <2,3>, inserting into index {0} will replace the first row. index {1,2} will replace the last cell.
// @param index
// @param input
// @return Status code
/// Copy input tensor into self at the location index.
/// Index is a vector of axises which can be incomplete:
/// Ex: shape <2,3>, inserting into index {0} will replace the first row. index {1,2} will replace the last cell.
/// \param index
/// \param input
/// \return Status code
Status InsertTensor(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input);
// Find the address of the given index. Used in InsertTensor.
// Example:
// Tensor t= [[1,2],[3,4]] , StartAddrOfIndex({0}) -> &1
// @param index incomplete index
// @param output: startAddrofIndex
// @param output: remaining
// @return Status code
/// Find the address of the given index. Used in InsertTensor.
/// Example:
/// Tensor t= [[1,2],[3,4]] , StartAddrOfIndex({0}) -> &1
/// \param index incomplete index
/// \param output: startAddrofIndex
/// \param output: remaining
/// \return Status code
Status StartAddrOfIndex(std::vector<dsize_t> ind, uchar **start_addr_of_index, TensorShape *remaining);
// Expand the shape of the Tensor with one extra dimension.
// For example, if the shape is <512,512,3>:
// *- ExpandDim(0) gives: <1,512,512,3>
// *- ExpandDim(1) gives: <512,1,512,3>
// *- ExpandDim(3) gives: <512,512,3,1>
// @param axis location of the dim
/// Expand the shape of the Tensor with one extra dimension.
/// For example, if the shape is <512,512,3>:
/// *- ExpandDim(0) gives: <1,512,512,3>
/// *- ExpandDim(1) gives: <512,1,512,3>
/// *- ExpandDim(3) gives: <512,512,3,1>
/// \param axis location of the dim
virtual Status ExpandDim(const dsize_t &axis);
virtual void Squeeze();
// Calculates the strides of the Tensor
// Ex: Tensor of shape <4,2,2> and type DE_UINT8 (1 byte)
// The strides will be {6,2,1}.
// Ex: Tensor of shape <4,2,2> and type DE_UINT32 (4 byte)
// The strides will be {24,8,4}.
// @return vector of integers
std::vector<dsize_t> Strides();
/// Calculates the strides of the Tensor
/// Ex: Tensor of shape <4,2,2> and type DE_UINT8 (1 byte)
/// The strides will be {6,2,1}.
/// Ex: Tensor of shape <4,2,2> and type DE_UINT32 (4 byte)
/// The strides will be {24,8,4}.
/// \return vector of integers
std::vector<dsize_t> Strides() const;
std::string ToString() {
std::stringstream ss;
@ -375,26 +355,26 @@ class Tensor {
return ss.str();
}
// Handle negative indices.
/// Handle negative indices.
static inline dsize_t HandleNeg(dsize_t index, dsize_t length) { return (index < 0) ? (index + length) : index; }
// Slice tensor bases on the given indicies. Copy the sliced data into out tensor. Only rank1 tensors are supported.
// Based on the type of tensor, SliceNumeric or SliceString will be called
// @param out Tensor
// @param indices vector of indices
// @return Status error code
Status Slice(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice tensor bases on the given indicies. Copy the sliced data into out tensor. Only rank1 tensors are supported.
/// Based on the type of tensor, SliceNumeric or SliceString will be called
/// \param[out] out Tensor
/// \param[in] indices vector of indices
/// \return Status error code
Status Slice(TensorPtr *out, const std::vector<dsize_t> &indices);
// Slice numeric tensors.
Status SliceNumeric(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice numeric tensors.
Status SliceNumeric(TensorPtr *out, const std::vector<dsize_t> &indices);
// Slice string tensors
Status SliceString(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice string tensors
Status SliceString(TensorPtr *out, const std::vector<dsize_t> &indices);
#ifdef ENABLE_PYTHON
// Constructs numpy array from input tensor
// @param data this data is the location of python data
// @return Status code
/// Constructs numpy array from input tensor
/// \param[in] data this data is the location of python data
/// \return Status code
Status GetDataAsNumpy(py::array *data);
Status GetDataAsNumpyStrings(py::array *data);
@ -402,12 +382,12 @@ class Tensor {
static Status GetBufferInfo(Tensor *t, py::buffer_info *out);
#endif
// Concatenate based on given tensor, can fill in current tensor with a smaller one, unlike InsertTensor
/// Concatenate based on given tensor, can fill in current tensor with a smaller one, unlike InsertTensor
Status Concatenate(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input);
// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
// @tparam T type of values in the Tensor Iterator
/// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
/// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
/// \tparam T type of values in the Tensor Iterator
template <typename T, bool = true>
class TensorIterator {
public:
@ -498,7 +478,7 @@ class Tensor {
};
// Specialization of TensorIterator for strings. It returns std::string_view for every item.
// @tparam DUMMY, used to mbe able to specialize the inner class
// \tparam DUMMY, used to mbe able to specialize the inner class
template <bool DUMMY>
class TensorIterator<std::string_view, DUMMY> {
public:
@ -585,84 +565,192 @@ class Tensor {
const char *data_;
};
// Return a TensorIterator that points to the start of the Tensor.
// It's the user responsibility to use the correct type that matches the Tensor type
// @param T The type of values in the Tensor
// @return TensorIterator
/// Return a TensorIterator that points to the start of the Tensor.
/// It's the user responsibility to use the correct type that matches the Tensor type
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> begin() {
AllocateBuffer(SizeInBytes());
return TensorIterator<T>(data_);
}
// Return a linear iterator that points to the place after the last element of the Tensor.
// @tparam T The type of values in the Tensor
// @return TensorIterator
/// Return a linear iterator that points to the place after the last element of the Tensor.
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> end() {
return TensorIterator<T>(data_end_);
}
// Copies the last dimension at `index` from Tensor `src` to this Tensor.
// @param src Tensor
// @param index vector to the start of the dimension. The last dim should be 0
// @return Status
/// Copies the last dimension at `index` from Tensor `src` to this Tensor.
/// \param[in] src Tensor
/// \param[in] index vector to the start of the dimension. The last dim should be 0
/// \return Status
Status CopyLastDimAt(const std::shared_ptr<Tensor> &src, const std::vector<dsize_t> &index);
protected:
// Get the starting memory address for the data of the tensor. This potentially
// drives an allocation if the data is null.
// @return unsigned char*
unsigned char *GetMutableBuffer();
/// Allocate memory for the tensor using the data_allocator
/// \param[in] length number of bytes to be allocated
/// \return Error Status
Status AllocateBuffer(const dsize_t &length);
// A function that prints Tensor recursively, first called by print
// @param out
// @param cur_dim
// @param cur_index
/// Get the starting memory address for the data of the tensor. This potentially
/// drives an allocation if the data is null.
/// \return unsigned char*
unsigned char *GetMutableBuffer() { return data_; }
/// A function that prints Tensor recursively, first called by print
/// \param[in] out
/// \param[in] cur_dim
/// \param[in] cur_index
void PrintRecursive(std::ostream &out, int32_t cur_dim, const std::vector<dsize_t> &cur_index) const;
// A function that prints info about the tensor
// @param out output stream
/// A function that prints info about the tensor
/// \param[out] out output stream
void Print(std::ostream &out) const;
// A function that print the value as specified by its index
// @param index vector representing the index
// @param out
/// A function that print the value as specified by its index
/// \param[in] index vector representing the index
/// \param[out] out
void PrintItemAt(const std::vector<dsize_t> &index, std::ostream &out) const;
// Get pointer to item located at `index`, caller needs to provide the type.
// @tparam T
// @param index vector<dsize_t>
// @return return a pointer to the item specified at index of type `T`
/// Get pointer to item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the item specified at index of type `T`
template <typename T>
Status GetItemPtr(T **, const std::vector<dsize_t> &index) const;
// Get pointer to string located at `index` and the length of string
// @param index vector<dsize_t>
// @return return a pointer to the string specified at index and the length of the string
/// Get pointer to string located at `index` and the length of string
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the string specified at index and the length of the string
Status GetItemPtr(uchar **, const std::vector<dsize_t> &index, offset_t *length = nullptr) const;
// Given a flat index of an item string, return the start and length of the item
// @param index flat index of the item
// @return start address of the ths string
// @return length of the string
/// Given a flat index of an item string, return the start and length of the item
/// \param[in] index flat index of the item
/// \param[out] start address of the ths string
/// \param[out] length of the string
Status GetStringAt(dsize_t index, uchar **string_start, offset_t *length) const;
// all access to shape_ should be via shape
/// Skip the offsets and returns the start of the buffer where the real strings is stored. Caller needs to check if
/// the tensor's type is a string, otherwise undefined address would be returned. \return address of the first string
/// of the tensor.
uchar *GetStringsBuffer() const { return data_ + kOffsetSize * shape_.NumOfElements() + kOffsetSize; }
/// all access to shape_ should be via shape
TensorShape shape_;
// data type of tensor
/// data type of tensor
DataType type_;
// pointer to the start of the physical data
/// pointer to the start of the physical data
unsigned char *data_;
// An allocator for data_
/// An allocator for data_
CharAllocPtr data_allocator_;
// pointer to the end of the physical data
/// pointer to the end of the physical data
unsigned char *data_end_ = nullptr;
private:
/// Helper function to create a tensor from Numpy array of strings
/// \param[in] arr Numpy array
/// \param[out] out Created Tensor
/// \return Status
static Status CreateFromNpString(py::array arr, TensorPtr *out);
/// Copy raw data of a array based on shape and strides to the destination pointer
/// \param dst [out] Pointer to the destination array where the content is to be copied
/// \param[in] src Pointer to the source of strided array to be copied
/// \param[in] shape shape of the source array
/// \param[in] strides strides of the source array
/// \param[in] type_size number of bytes needed to store one array element's type
/// \return Status Code
static Status CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size);
/// const of the size of the offset variable
static constexpr uint8_t kOffsetSize = sizeof(offset_t);
};
template <>
inline Tensor::TensorIterator<std::string_view> Tensor::end<std::string_view>() {
return TensorIterator<std::string_view>(data_, shape_.NumOfElements());
}
/// Create a Tensor from a given list of strings.
/// @note: The memory layout of a Tensor of strings consists of the Offset_array followed by the strings.
/// The offset array will store one extra value to find the length of the last string.
/// OFFSET_1, OFFSET_2, ..., OFFSET_n+1, STRING_1, STRING_2, ..., STRING_n
/// The value of each offset is the start index of the corresponding string
/// Offsets is of type offset_t
/// strings will ne null-terminated
/// example: Tensor(['abc', 'de'], shape={2}, type=DE_STRING)
/// |----------------------------------------------------------------|
/// | OFFSET ARRAY | STRINGS |
/// | bytes 0-3 | bytes 3-6 | bytes 7-10 | bytes 11-14 | bytes 15-17 |
/// | 11 | 15 | 18 | abc\0 | de\0 |
/// |----------------------------------------------------------------|
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <>
inline Status Tensor::CreateFromVector<std::string>(const std::vector<std::string> &items, const TensorShape &shape,
TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, TensorShape({static_cast<dsize_t>(items.size())}),
DataType(DataType::DE_STRING));
if (items.size() == 0) {
if (shape.known()) {
return (*out)->Reshape(shape);
}
}
auto length_sum = [](dsize_t sum, const std::string &s) { return s.length() + sum; };
dsize_t total_length = std::accumulate(items.begin(), items.end(), 0, length_sum);
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize + 1) * (*out)->shape_.NumOfElements() + kOffsetSize + total_length;
(*out)->AllocateBuffer(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>((*out)->data_);
uchar *buf = (*out)->GetStringsBuffer();
offset_t offset = buf - (*out)->data_; // the first string will start here
uint32_t i = 0;
for (const auto &str : items) {
// insert the start index of the string.
offset_arr[i++] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s((*out)->data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) MS_LOG(ERROR) << "Cannot copy string into Tensor";
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
// length[last_element] = offset_arr[last_element + 1] - offset_arr[last_element]
offset_arr[i] = offset;
(*out)->data_end_ = (*out)->data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
if (shape.known()) {
RETURN_IF_NOT_OK((*out)->Reshape(shape));
}
return Status::OK();
}
/// Create a string scalar Tensor from the given value.
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <>
inline Status Tensor::CreateScalar<std::string>(const std::string &item, TensorPtr *out) {
return CreateFromVector<std::string>({item}, TensorShape::CreateScalar(), out);
}
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_CORE_TENSOR_H_

View File

@ -141,8 +141,9 @@ Status BatchFetchRequest::RestoreOneTensor(const TensorMetaMsg *col_ts, const Re
#undef CASE
DataType type(dest);
std::shared_ptr<Tensor> ts =
std::make_shared<Tensor>(shape, type, static_cast<const unsigned char *>(data.GetPointer()), data.GetSize());
std::shared_ptr<Tensor> ts;
RETURN_IF_NOT_OK(
Tensor::CreateFromMemory(shape, type, static_cast<const unsigned char *>(data.GetPointer()), data.GetSize(), &ts));
// Next we restore the real data which can be embedded or stored separately.
if (ts->SizeInBytes() != data.GetSize()) {
MS_LOG(ERROR) << "Unexpected length. Read " << data.GetSize() << ". Expected " << ts->SizeInBytes() << ".\n"

View File

@ -176,12 +176,15 @@ Status BatchOp::BatchRows(const std::unique_ptr<TensorQTable> *src, const std::u
std::shared_ptr<Tensor> new_tensor;
if (first_type.IsNumeric()) { // numeric tensor
RETURN_IF_NOT_OK(Tensor::CreateTensor(&new_tensor, TensorImpl::kFlexible, new_shape, first_type));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(new_shape, first_type, &new_tensor));
dsize_t j = 0;
for (auto row : **src) {
std::shared_ptr<Tensor> old_tensor = row.at(i); // row j, column i
if (old_tensor->shape() == first_shape) { // check the newly popped rows have the same dim as the first
if (new_shape.NumOfElements() != 0) {
RETURN_IF_NOT_OK(new_tensor->InsertTensor({j++}, old_tensor));
}
// Don't do anything if the tensor has no data
} else {
RETURN_STATUS_UNEXPECTED("[Batch ERROR] Inconsistent TensorShapes of Column " + std::to_string(i));
}
@ -194,7 +197,7 @@ Status BatchOp::BatchRows(const std::unique_ptr<TensorQTable> *src, const std::u
strings.emplace_back(*itr);
}
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&new_tensor, strings, new_shape));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(strings, new_shape, &new_tensor));
}
batched_row.emplace_back(new_tensor);
}
@ -352,7 +355,7 @@ Status BatchOp::InvokeBatchMapFunc(TensorBatchTable *input, TensorBatchTable *ou
py::list output_list = py::cast<py::list>(ret_tuple[i]);
for (size_t j = 0; j < output_list.size(); j++) {
std::shared_ptr<Tensor> out;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, py::cast<py::array>(output_list[j])));
RETURN_IF_NOT_OK(Tensor::CreateFromNpArray(py::cast<py::array>(output_list[j]), &out));
output_batch.push_back(std::move(out));
}
output->push_back(std::move(output_batch));

View File

@ -226,7 +226,8 @@ void CacheMergeOp::TensorRowRequest::WakeUpAny(TensorRow &&row) {
if (GetState() == State::kEmpty) {
// We will do a deep copy
for (auto &ts : row) {
auto out_ts = std::make_shared<Tensor>(ts->shape(), ts->type(), ts->GetBuffer(), ts->SizeInBytes());
std::shared_ptr<Tensor> out_ts;
Tensor::CreateFromTensor(ts, &out_ts);
cleaner_copy_.push_back(out_ts);
}
cleaner_copy_.setId(row.getId());

View File

@ -72,6 +72,7 @@ Status DeviceQueueOp::CheckExceptions(const std::unique_ptr<DataBuffer> &buffer)
buffer->GetRow(0, &row);
for (const auto &item : row) {
CHECK_FAIL_RETURN_UNEXPECTED(item->type().IsNumeric(), "Cannot send tensor of string type to device.");
CHECK_FAIL_RETURN_UNEXPECTED(item->HasData(), "Cannot send tensor with no data.");
}
}
return Status::OK();

View File

@ -359,7 +359,7 @@ Status CelebAOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string,
Path path(folder_path_);
Path image_path = path / image_label.first;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image, image_path.toString()));
RETURN_IF_NOT_OK(Tensor::CreateFromFile(image_path.toString(), &image));
if (decode_ == true) {
Status rc = Decode(image, &image);
if (rc.IsError()) {
@ -369,9 +369,8 @@ Status CelebAOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string,
}
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(),
TensorShape({1, (uint32_t)image_label.second.size()}),
data_schema_->column(1).type()));
RETURN_IF_NOT_OK(
Tensor::CreateEmpty(TensorShape({1, (uint32_t)image_label.second.size()}), data_schema_->column(1).type(), &label));
RETURN_IF_NOT_OK(label->Zero());
for (uint32_t index = 0; index < image_label.second.size(); index++) {
if (image_label.second[index] == 1) {

View File

@ -190,15 +190,12 @@ Status CifarOp::LoadTensorRow(uint64_t index, TensorRow *trow) {
std::shared_ptr<Tensor> label;
std::shared_ptr<Tensor> fine_label;
std::shared_ptr<Tensor> ori_image = cifar_image_label_pairs_[index].first;
std::shared_ptr<Tensor> copy_image =
std::make_shared<Tensor>(ori_image->shape(), ori_image->type(), ori_image->GetBuffer());
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), data_schema_->column(1).shape(),
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&cifar_image_label_pairs_[index].second[0])));
std::shared_ptr<Tensor> copy_image;
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(ori_image, &copy_image));
RETURN_IF_NOT_OK(Tensor::CreateScalar(cifar_image_label_pairs_[index].second[0], &label));
if (cifar_image_label_pairs_[index].second.size() > 1) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&fine_label, data_schema_->column(2).tensorImpl(), data_schema_->column(2).shape(),
data_schema_->column(2).type(), reinterpret_cast<unsigned char *>(&cifar_image_label_pairs_[index].second[1])));
RETURN_IF_NOT_OK(Tensor::CreateScalar(cifar_image_label_pairs_[index].second[1], &fine_label));
(*trow) = TensorRow(index, {copy_image, std::move(label), std::move(fine_label)});
} else {
(*trow) = TensorRow(index, {copy_image, std::move(label)});
@ -359,9 +356,8 @@ Status CifarOp::ParseCifarData() {
}
std::shared_ptr<Tensor> image_tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image_tensor, data_schema_->column(0).tensorImpl(),
TensorShape({kCifarImageHeight, kCifarImageWidth, kCifarImageChannel}),
data_schema_->column(0).type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape({kCifarImageHeight, kCifarImageWidth, kCifarImageChannel}),
data_schema_->column(0).type(), &image_tensor));
auto itr = image_tensor->begin<uint8_t>();
uint32_t total_pix = kCifarImageHeight * kCifarImageWidth;
for (int pix = 0; pix < total_pix; ++pix) {

View File

@ -127,7 +127,7 @@ Status ClueOp::LoadTensor(const std::string &line, std::unique_ptr<TensorQTable>
(*tensor_table)->push_back(std::move(tRow));
std::shared_ptr<Tensor> tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, {line}, TensorShape::CreateScalar()));
RETURN_IF_NOT_OK(Tensor::CreateScalar(line, &tensor));
(**tensor_table)[row][0] = std::move(tensor);
return Status::OK();
}
@ -144,26 +144,19 @@ Status ClueOp::GetValue(const nlohmann::json &js, std::vector<std::string> key_c
std::string final_str = key_chain.back();
switch (cursor.type()) {
case nlohmann::detail::value_t::string:
RETURN_IF_NOT_OK(Tensor::CreateTensor(t, {cursor.get<std::string>()}, TensorShape::CreateScalar()));
RETURN_IF_NOT_OK(Tensor::CreateScalar(cursor.get<std::string>(), t));
break;
case nlohmann::detail::value_t::number_integer:
RETURN_IF_NOT_OK(
Tensor::CreateTensor(t, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_INT32)));
(*t)->SetItemAt<int32_t>({0}, cursor.get<int32_t>());
RETURN_IF_NOT_OK(Tensor::CreateScalar(cursor.get<int32_t>(), t));
break;
case nlohmann::detail::value_t::number_unsigned:
RETURN_IF_NOT_OK(
Tensor::CreateTensor(t, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_INT32)));
(*t)->SetItemAt<int32_t>({0}, cursor.get<uint32_t>());
RETURN_IF_NOT_OK(Tensor::CreateScalar(cursor.get<uint32_t>(), t));
break;
case nlohmann::detail::value_t::number_float:
RETURN_IF_NOT_OK(
Tensor::CreateTensor(t, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_FLOAT32)));
(*t)->SetItemAt<int32_t>({0}, cursor.get<float>());
RETURN_IF_NOT_OK(Tensor::CreateScalar(cursor.get<float>(), t));
break;
case nlohmann::detail::value_t::array:
RETURN_IF_NOT_OK(Tensor::CreateTensor(t, {cursor.get<std::vector<std::string>>()}, TensorShape::CreateScalar()));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(cursor.get<std::vector<std::string>>(), t));
break;
default:
break;

View File

@ -239,9 +239,8 @@ Status CocoOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, Te
}
std::vector<dsize_t> bbox_dim = {bbox_row_num, bbox_column_num};
RETURN_IF_NOT_OK(Tensor::CreateTensor(&coordinate, data_schema_->column(1).tensorImpl(), TensorShape(bbox_dim),
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&bbox_row[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(bbox_row, TensorShape(bbox_dim), &coordinate));
if (task_type_ == TaskType::Detection) {
RETURN_IF_NOT_OK(LoadDetectionTensorRow(row_id, image_id, image, coordinate, trow));
} else if (task_type_ == TaskType::Stuff || task_type_ == TaskType::Keypoint) {
@ -278,13 +277,12 @@ Status CocoOp::LoadDetectionTensorRow(row_id_type row_id, const std::string &ima
iscrowd_row.push_back(annotation[i]);
}
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&category_id, data_schema_->column(2).tensorImpl(), TensorShape({static_cast<dsize_t>(category_id_row.size()), 1}),
data_schema_->column(2).type(), reinterpret_cast<unsigned char *>(&category_id_row[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(
category_id_row, TensorShape({static_cast<dsize_t>(category_id_row.size()), 1}), &category_id));
RETURN_IF_NOT_OK(
Tensor::CreateFromVector(iscrowd_row, TensorShape({static_cast<dsize_t>(iscrowd_row.size()), 1}), &iscrowd));
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&iscrowd, data_schema_->column(3).tensorImpl(), TensorShape({static_cast<dsize_t>(iscrowd_row.size()), 1}),
data_schema_->column(3).type(), reinterpret_cast<unsigned char *>(&iscrowd_row[0])));
(*trow) = TensorRow(row_id, {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd)});
return Status::OK();
}
@ -302,9 +300,8 @@ Status CocoOp::LoadSimpleTensorRow(row_id_type row_id, const std::string &image_
item_queue = itr_item->second;
std::vector<dsize_t> bbox_dim = {static_cast<dsize_t>(item_queue.size()), 1};
RETURN_IF_NOT_OK(Tensor::CreateTensor(&item, data_schema_->column(2).tensorImpl(), TensorShape(bbox_dim),
data_schema_->column(2).type(),
reinterpret_cast<unsigned char *>(&item_queue[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(item_queue, TensorShape(bbox_dim), &item));
(*trow) = TensorRow(row_id, {std::move(image), std::move(coordinate), std::move(item)});
return Status::OK();
}
@ -334,18 +331,14 @@ Status CocoOp::LoadMixTensorRow(row_id_type row_id, const std::string &image_id,
area_row.push_back(annotation[i]);
}
}
RETURN_IF_NOT_OK(Tensor::CreateFromVector(
category_id_row, TensorShape({static_cast<dsize_t>(category_id_row.size()), 1}), &category_id));
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&category_id, data_schema_->column(2).tensorImpl(), TensorShape({static_cast<dsize_t>(category_id_row.size()), 1}),
data_schema_->column(2).type(), reinterpret_cast<unsigned char *>(&category_id_row[0])));
RETURN_IF_NOT_OK(
Tensor::CreateFromVector(iscrowd_row, TensorShape({static_cast<dsize_t>(iscrowd_row.size()), 1}), &iscrowd));
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&iscrowd, data_schema_->column(3).tensorImpl(), TensorShape({static_cast<dsize_t>(iscrowd_row.size()), 1}),
data_schema_->column(3).type(), reinterpret_cast<unsigned char *>(&iscrowd_row[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(area_row, TensorShape({static_cast<dsize_t>(area_row.size()), 1}), &area));
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&area, data_schema_->column(4).tensorImpl(), TensorShape({static_cast<dsize_t>(area_row.size()), 1}),
data_schema_->column(4).type(), reinterpret_cast<unsigned char *>(&area_row[0])));
(*trow) = TensorRow(
row_id, {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd), std::move(area)});
return Status::OK();
@ -596,7 +589,7 @@ Status CocoOp::LaunchThreadsAndInitOp() {
}
Status CocoOp::ReadImageToTensor(const std::string &path, const ColDescriptor &col, std::shared_ptr<Tensor> *tensor) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, path));
RETURN_IF_NOT_OK(Tensor::CreateFromFile(path, tensor));
if (decode_ == true) {
Status rc = Decode(*tensor, tensor);

View File

@ -102,18 +102,13 @@ int CsvOp::CsvParser::put_record(char c) {
std::shared_ptr<Tensor> t;
switch (column_default_[cur_col_]->type) {
case CsvOp::INT:
Tensor::CreateTensor(&t, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_INT32));
t->SetItemAt<int32_t>({0}, std::stoi(s));
Tensor::CreateScalar(std::stoi(s), &t);
break;
case CsvOp::FLOAT:
Tensor::CreateTensor(&t, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_FLOAT32));
t->SetItemAt<float>({0}, std::stof(s));
break;
case CsvOp::STRING:
Tensor::CreateTensor(&t, {s}, TensorShape::CreateScalar());
Tensor::CreateScalar(std::stof(s), &t);
break;
default:
Tensor::CreateTensor(&t, {s}, TensorShape::CreateScalar());
Tensor::CreateScalar(s, &t);
break;
}
(*tensor_table_)[cur_row_][cur_col_] = std::move(t);

View File

@ -129,7 +129,7 @@ Status GeneratorOp::PyRowToTensorRow(py::object py_data, TensorRow *tensor_row)
"Generator should return a tuple of numpy arrays.");
}
std::shared_ptr<Tensor> tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, ret_py_ele.cast<py::array>()));
RETURN_IF_NOT_OK(Tensor::CreateFromNpArray(ret_py_ele.cast<py::array>(), &tensor));
if ((!column_types_.empty()) && (column_types_[i] != DataType::DE_UNKNOWN) &&
(column_types_[i] != tensor->type())) {
return Status(StatusCode::kPyFuncException, __LINE__, __FILE__, "Generator type check failed.");

View File

@ -201,10 +201,8 @@ Status ImageFolderOp::WorkerEntry(int32_t worker_id) {
// Load 1 TensorRow (image,label) using 1 ImageLabelPair. 1 function call produces 1 TensorTow in a DataBuffer
Status ImageFolderOp::LoadTensorRow(row_id_type row_id, ImageLabelPair pairPtr, TensorRow *trow) {
std::shared_ptr<Tensor> image, label;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), data_schema_->column(1).shape(),
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&pairPtr->second)));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image, folder_path_ + (pairPtr->first)));
RETURN_IF_NOT_OK(Tensor::CreateScalar(pairPtr->second, &label));
RETURN_IF_NOT_OK(Tensor::CreateFromFile(folder_path_ + (pairPtr->first), &image));
if (decode_ == true) {
Status rc = Decode(image, &image);

View File

@ -185,17 +185,14 @@ Status ManifestOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string
std::vector<int32_t> label_index(data.second.size());
(void)std::transform(data.second.begin(), data.second.end(), label_index.begin(),
[this](const std::string &label_name) { return label_index_[label_name]; });
RETURN_IF_NOT_OK(Tensor::CreateFromVector(label_index, &label));
if (label_index.size() == 1) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), TensorShape({}),
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&label_index[0])));
label->Reshape(TensorShape({}));
} else {
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&label, data_schema_->column(1).tensorImpl(), TensorShape(std::vector<dsize_t>(1, label_index.size())),
data_schema_->column(1).type(), reinterpret_cast<unsigned char *>(&label_index[0])));
label->Reshape(TensorShape(std::vector<dsize_t>(1, label_index.size())));
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image, data.first));
RETURN_IF_NOT_OK(Tensor::CreateFromFile(data.first, &image));
if (decode_ == true) {
Status rc = Decode(image, &image);
if (rc.IsError()) {

View File

@ -381,15 +381,15 @@ Status MindRecordOp::LoadTensorRow(TensorRow *tensor_row, const std::vector<uint
auto num_elements = n_bytes / column_data_type_size;
if (type == DataType::DE_STRING) {
std::string s{data, data + n_bytes};
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, {s}, TensorShape::CreateScalar()));
RETURN_IF_NOT_OK(Tensor::CreateScalar(s, &tensor));
} else if (column.hasShape()) {
auto new_shape = TensorShape(column.shape());
RETURN_IF_NOT_OK(column.MaterializeTensorShape(static_cast<int32_t>(num_elements), &new_shape));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, column.tensorImpl(), new_shape, type, data));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(new_shape, type, data, &tensor));
} else {
std::vector<dsize_t> shapeDetails = {static_cast<dsize_t>(num_elements)};
auto new_shape = TensorShape(shapeDetails);
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, column.tensorImpl(), new_shape, type, data));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(new_shape, type, data, &tensor));
}
tensor_row->push_back(std::move(tensor));
}

View File

@ -160,12 +160,10 @@ Status MnistOp::WorkerEntry(int32_t worker_id) {
// Load 1 TensorRow (image,label) using 1 MnistLabelPair.
Status MnistOp::LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pair, TensorRow *trow) {
std::shared_ptr<Tensor> image, label;
int32_t l = mnist_pair.second;
// make a copy of cached tensor
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image, data_schema_->column(0).tensorImpl(), mnist_pair.first->shape(),
mnist_pair.first->type(), mnist_pair.first->GetBuffer()));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), data_schema_->column(1).shape(),
data_schema_->column(1).type(), reinterpret_cast<unsigned char *>(&l)));
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(mnist_pair.first, &image));
RETURN_IF_NOT_OK(Tensor::CreateScalar(mnist_pair.second, &label));
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}
@ -325,8 +323,8 @@ Status MnistOp::ReadImageAndLabel(std::ifstream *image_reader, std::ifstream *la
pixels[m] = (pixels[m] == 0) ? 0 : 255;
}
std::shared_ptr<Tensor> image;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&image, data_schema_->column(0).tensorImpl(), img_tensor_shape,
data_schema_->column(0).type(), reinterpret_cast<unsigned char *>(pixels)));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(img_tensor_shape, data_schema_->column(0).type(),
reinterpret_cast<unsigned char *>(pixels), &image));
image_label_pairs_.emplace_back(std::make_pair(image, labels_buf[j]));
}
return Status::OK();

View File

@ -40,7 +40,7 @@ namespace dataset {
template <typename T>
class Queue;
using MnistLabelPair = std::pair<std::shared_ptr<Tensor>, int32_t>;
using MnistLabelPair = std::pair<std::shared_ptr<Tensor>, uint32_t>;
class MnistOp : public ParallelOp, public RandomAccessOp {
public:

View File

@ -361,8 +361,7 @@ Status RandomDataOp::CreateRandomRow(int32_t worker_id, TensorRow *new_row) {
return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, "Failed to set random bytes for a tensor.");
}
RETURN_IF_NOT_OK(
Tensor::CreateTensor(&new_tensor, current_col.tensorImpl(), *new_shape, current_col.type(), buf.get()));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(*new_shape, current_col.type(), buf.get(), &new_tensor));
// Add this tensor to the tensor row for output
(*new_row).push_back(std::move(new_tensor));

View File

@ -41,7 +41,7 @@ Status PythonSampler::GetNextSample(std::unique_ptr<DataBuffer> *out_buffer) {
try {
py::object py_ret = py_sampler_instance.attr("_get_indices")();
py::array np_sample_ids = py_ret.cast<py::array>();
Tensor::CreateTensor(&sample_ids, np_sample_ids); // copy numpy to tensor
Tensor::CreateFromNpArray(np_sample_ids, &sample_ids); // copy numpy to tensor
if (HasChildSampler()) {
for (auto it = sample_ids->begin<int64_t>(); it != sample_ids->end<int64_t>(); ++it) {

View File

@ -73,9 +73,7 @@ Status Sampler::CreateSamplerTensor(std::shared_ptr<Tensor> *sample_ids, int64_t
col_desc_ = std::make_unique<ColDescriptor>("sampleIds", DataType(DataType::DE_INT64), TensorImpl::kFlexible, 1);
}
TensorShape shape(std::vector<dsize_t>(1, num_elements));
RETURN_IF_NOT_OK(Tensor::CreateTensor(sample_ids, col_desc_->tensorImpl(), shape, col_desc_->type()));
RETURN_IF_NOT_OK(
(*sample_ids)->AllocateBuffer((*sample_ids)->SizeInBytes())); // allocate memory in case user forgets!
RETURN_IF_NOT_OK(Tensor::CreateEmpty(shape, col_desc_->type(), sample_ids));
return Status::OK();
}

View File

@ -146,7 +146,7 @@ Status TextFileOp::LoadTensor(const std::string &line, std::unique_ptr<TensorQTa
(*tensor_table)->push_back(std::move(tRow));
std::shared_ptr<Tensor> tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&tensor, {line}, TensorShape::CreateScalar()));
RETURN_IF_NOT_OK(Tensor::CreateScalar(line, &tensor));
(**tensor_table)[row][0] = std::move(tensor);
return Status::OK();
}

View File

@ -677,8 +677,7 @@ Status TFReaderOp::LoadFeature(const std::unique_ptr<TensorQTable> *tensor_table
// into the tensor
TensorShape current_shape = TensorShape::CreateUnknownRankShape();
RETURN_IF_NOT_OK(current_col.MaterializeTensorShape(num_elements, &current_shape));
RETURN_IF_NOT_OK(
Tensor::CreateTensor(&ts, current_col.tensorImpl(), current_shape, current_col.type(), data_ptr));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(current_shape, current_col.type(), data_ptr, &ts));
break;
}
case dataengine::Feature::KindCase::kInt64List: {
@ -735,7 +734,7 @@ Status TFReaderOp::LoadBytesList(const ColDescriptor &current_col, const dataeng
if (current_col.type() == DataType::DE_STRING) {
TensorShape shape = TensorShape::CreateScalar();
RETURN_IF_NOT_OK(current_col.MaterializeTensorShape(*num_elements, &shape));
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, bytes_list, shape));
RETURN_IF_NOT_OK(Tensor::CreateFromByteList(bytes_list, shape, tensor));
return Status::OK();
}
@ -763,7 +762,7 @@ Status TFReaderOp::LoadBytesList(const ColDescriptor &current_col, const dataeng
// know how many elements there are and the total bytes, create tensor here:
TensorShape current_shape = TensorShape::CreateScalar();
RETURN_IF_NOT_OK(current_col.MaterializeTensorShape((*num_elements) * pad_size, &current_shape));
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, bytes_list, current_shape, current_col.type(), pad_size));
RETURN_IF_NOT_OK(Tensor::CreateFromByteList(bytes_list, current_shape, current_col.type(), pad_size, tensor));
return Status::OK();
}
@ -836,10 +835,7 @@ Status TFReaderOp::LoadIntList(const ColDescriptor &current_col, const dataengin
// know how many elements there are, create tensor here:
TensorShape current_shape = TensorShape::CreateUnknownRankShape();
RETURN_IF_NOT_OK(current_col.MaterializeTensorShape(*num_elements, &current_shape));
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, current_col.tensorImpl(), current_shape, current_col.type()));
// Tensors are lazily allocated, this eagerly allocates memory for the tensor.
RETURN_IF_NOT_OK((*tensor)->AllocateBuffer((*tensor)->SizeInBytes()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(current_shape, current_col.type(), tensor));
int64_t i = 0;
auto it = (*tensor)->begin<T>();

View File

@ -375,7 +375,7 @@ Status VOCOp::LaunchThreadsAndInitOp() {
}
Status VOCOp::ReadImageToTensor(const std::string &path, const ColDescriptor &col, std::shared_ptr<Tensor> *tensor) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, path));
RETURN_IF_NOT_OK(Tensor::CreateFromFile(path, tensor));
if (decode_ == true) {
Status rc = Decode(*tensor, tensor);
if (rc.IsError()) {
@ -412,18 +412,10 @@ Status VOCOp::ReadAnnotationToTensor(const std::string &path, TensorRow *row) {
bbox_num++;
}
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&bbox, data_schema_->column(1).tensorImpl(), TensorShape({bbox_num, 4}),
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&bbox_data[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(2).tensorImpl(), TensorShape({bbox_num, 1}),
data_schema_->column(2).type(),
reinterpret_cast<unsigned char *>(&label_data[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&difficult, data_schema_->column(3).tensorImpl(), TensorShape({bbox_num, 1}),
data_schema_->column(3).type(),
reinterpret_cast<unsigned char *>(&difficult_data[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&truncate, data_schema_->column(4).tensorImpl(), TensorShape({bbox_num, 1}),
data_schema_->column(4).type(),
reinterpret_cast<unsigned char *>(&truncate_data[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(bbox_data, TensorShape({bbox_num, 4}), &bbox));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(label_data, TensorShape({bbox_num, 1}), &label));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(difficult_data, TensorShape({bbox_num, 1}), &difficult));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(truncate_data, TensorShape({bbox_num, 1}), &truncate));
(*row) = TensorRow({std::move(bbox), std::move(label), std::move(difficult), std::move(truncate)});
return Status::OK();
}

View File

@ -57,8 +57,7 @@ Status Graph::CreateTensorByVector(const std::vector<std::vector<T>> &data, Data
std::shared_ptr<Tensor> tensor;
size_t m = data.size();
size_t n = data[0].size();
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&tensor, TensorImpl::kFlexible, TensorShape({static_cast<dsize_t>(m), static_cast<dsize_t>(n)}), type, nullptr));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape({static_cast<dsize_t>(m), static_cast<dsize_t>(n)}), type, &tensor));
auto ptr = tensor->begin<T>();
for (const auto &id_m : data) {
CHECK_FAIL_RETURN_UNEXPECTED(id_m.size() == n, "Each member of the vector has a different size");
@ -310,8 +309,7 @@ Status Graph::GetNodeFeature(const std::shared_ptr<Tensor> &nodes, const std::ve
dsize_t size = std::accumulate(shape_vec.begin(), shape_vec.end(), 1, std::multiplies<dsize_t>());
shape = shape.PrependDim(size);
std::shared_ptr<Tensor> fea_tensor;
RETURN_IF_NOT_OK(
Tensor::CreateTensor(&fea_tensor, TensorImpl::kFlexible, shape, default_feature->Value()->type(), nullptr));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(shape, default_feature->Value()->type(), &fea_tensor));
dsize_t index = 0;
for (auto node_itr = nodes->begin<NodeIdType>(); node_itr != nodes->end<NodeIdType>(); ++node_itr) {
@ -358,8 +356,7 @@ Status Graph::GetEdgeFeature(const std::shared_ptr<Tensor> &edges, const std::ve
dsize_t size = std::accumulate(shape_vec.begin(), shape_vec.end(), 1, std::multiplies<dsize_t>());
shape = shape.PrependDim(size);
std::shared_ptr<Tensor> fea_tensor;
RETURN_IF_NOT_OK(
Tensor::CreateTensor(&fea_tensor, TensorImpl::kFlexible, shape, default_feature->Value()->type(), nullptr));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(shape, default_feature->Value()->type(), &fea_tensor));
dsize_t index = 0;
for (auto edge_itr = edges->begin<EdgeIdType>(); edge_itr != edges->end<EdgeIdType>(); ++edge_itr) {

View File

@ -125,7 +125,7 @@ Status GraphLoader::LoadNode(const std::vector<uint8_t> &col_blob, const mindrec
(*feature_map)[node_type].insert(ind);
if ((*default_feature)[ind] == nullptr) {
std::shared_ptr<Tensor> zero_tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&zero_tensor, TensorImpl::kFlexible, tensor->shape(), tensor->type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(tensor->shape(), tensor->type(), &zero_tensor));
RETURN_IF_NOT_OK(zero_tensor->Zero());
(*default_feature)[ind] = std::make_shared<Feature>(ind, zero_tensor);
}
@ -151,7 +151,7 @@ Status GraphLoader::LoadEdge(const std::vector<uint8_t> &col_blob, const mindrec
(*feature_map)[edge_type].insert(ind);
if ((*default_feature)[ind] == nullptr) {
std::shared_ptr<Tensor> zero_tensor;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&zero_tensor, TensorImpl::kFlexible, tensor->shape(), tensor->type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(tensor->shape(), tensor->type(), &zero_tensor));
RETURN_IF_NOT_OK(zero_tensor->Zero());
(*default_feature)[ind] = std::make_shared<Feature>(ind, zero_tensor);
}
@ -170,9 +170,9 @@ Status GraphLoader::LoadFeatureTensor(const std::string &key, const std::vector<
key, col_blob, col_jsn, &data, &data_ptr, &n_bytes, &col_type, &col_type_size, &column_shape);
CHECK_FAIL_RETURN_UNEXPECTED(rs == mindrecord::SUCCESS, "fail to load column" + key);
if (data == nullptr) data = reinterpret_cast<const unsigned char *>(&data_ptr[0]);
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, TensorImpl::kFlexible,
std::move(TensorShape({static_cast<dsize_t>(n_bytes / col_type_size)})),
std::move(DataType(mindrecord::ColumnDataTypeNameNormalized[col_type])), data));
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(std::move(TensorShape({static_cast<dsize_t>(n_bytes / col_type_size)})),
std::move(DataType(mindrecord::ColumnDataTypeNameNormalized[col_type])),
data, tensor));
return Status::OK();
}

View File

@ -33,6 +33,7 @@
#include "pybind11/stl.h"
#endif
#include "common/utils.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/data_type.h"
#include "minddata/dataset/core/tensor_shape.h"
@ -50,170 +51,155 @@ class Allocator;
using CharAllocPtr = std::unique_ptr<Allocator<unsigned char>>;
using TensorAllocPtr = std::shared_ptr<Allocator<Tensor>>; // An allocator shared_ptr for Tensors
using offset_t = uint32_t; // type of offset values to store strings locations
using TensorPtr = std::shared_ptr<Tensor>;
class Tensor {
public:
Tensor() = delete;
// Create a new tensor, does not internally allocate storage. This constructor is protected, use CreateTensor.
// @note The shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
Tensor(const TensorShape &shape, const DataType &type);
// Create a new tensor, allocates storage and copies in data. This constructor is protected, use CreateTensor.
// @note The buffer should be valid and the shape and type information should be known and valid.
// @param shape TensorShape
// @param type DataType
// @param data unsigned char*, pointer to the data.
Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data);
Tensor(const TensorShape &shape, const DataType &type, const unsigned char *data, const dsize_t &length);
Tensor(const Tensor &other) = delete;
Tensor &operator=(const Tensor &other) = delete;
/// Create a tensor using shape and type. This constructor should not be used directly, use CreateFromTensor instead
/// \note The shape and type information should be known and valid
/// \note The constructor does not allocate data
/// \param shape TensorShape
/// \param type DataType
Tensor(const TensorShape &shape, const DataType &type);
/// Move constructor
/// \param other Tensor to be moved
Tensor(Tensor &&other) noexcept;
/// Move assigment operator
/// \param other Tensor to be moved
Tensor &operator=(Tensor &&other) noexcept;
Status AllocateBuffer(const dsize_t &length);
/// Create a numeric tensor with type and shape. Items of the tensor would be uninitialized.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateEmpty(const TensorShape &shape, const DataType &type, TensorPtr *out);
// type of offest values to store strings information
using offset_t = uint32_t;
// const of the size of the offset variable
static constexpr uint8_t kOffsetSize = sizeof(offset_t);
// Tensor base class which holds the data in an unsigned char* buffer.
/// Create a numeric tensor from a pointer in memory. Length of the source data is determined from the shape and type.
/// Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src, TensorPtr *out);
// Construct a scalar string Tensor
explicit Tensor(const std::string &str) : Tensor(std::vector<std::string>{str}, TensorShape::CreateScalar()) {}
/// Create a tensor from a pointer in memory and length. Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[in] length length of the src data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src,
const dsize_t &length, TensorPtr *out);
// Construct a tensor from a list of strings. Reshape the tensor with `shape` if given, otherwise assume the shape is
// the size of the vector `strings`.
// The memory layout of a Tensor of strings consists of the Offset_array followed by the strings.
// Thr offset array will store one extra value to find the length of the last string.
// OFFSET1, OFFSET2, ..., OFFSETn+1, STRING1, STRING2, ..., STRINGn
// The value of each offset is the start index of the corresponding string
// Offsets is of type offest_t
// strings will ne null-terminated
// example: Tensor(['abc', 'de'], shape={2}, type=DE_STRING)
// |----------------------------------------------------------------|
// | OFFSET ARRAY | STRINGS |
// | bytes 0-3 | bytes 3-6 | bytes 7-10 | bytes 11-14 | bytes 15-17 |
// | 11 | 15 | 18 | abc\0 | de\0 |
// |----------------------------------------------------------------|
explicit Tensor(const std::vector<std::string> &strings,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
// Same as Tensor(vector<string>) but the input is protobuf bytelist
explicit Tensor(const dataengine::BytesList &bytes_list,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
// A static factory method to create the given flavour of derived Tensor
// Returns the base class reference for the Tensor.
// @param ptr output argument to hold the created Tensor of given tensor_impl
// @param tensor_impl - which implementation of Tensor
// @param shape - shape of the tensor
// @param type - datatype of the tensor
// @param data - data to be copied to Tensor new allocation
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *, TensorImpl tensor_impl, const TensorShape &shape, DataType type,
const unsigned char *data = nullptr);
// Create a copy of the input tensor
// @param out [out] output tensor to be generated
// @param in [in] orginal tensor to be copied
// @return Status
static Status CreateTensor(std::shared_ptr<Tensor> *out, const std::shared_ptr<Tensor> &in) {
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, in->shape(), in->type(), in->GetBuffer(), in->SizeInBytes());
return Status::OK();
/// Create a copy of the input tensor
/// \param[in] in original tensor to be copied
/// \param[out] out output tensor to be generated
/// \return Status
static Status CreateFromTensor(const TensorPtr &in, TensorPtr *out) {
return CreateFromMemory(in->shape(), in->type(), in->GetBuffer(), in->SizeInBytes(), out);
}
#ifdef ENABLE_PYTHON
// A static factory method to create a Tensor from a given py::array.
// @param ptr output argument to hold the created Tensor
// @param arr py::array
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, py::array arr);
// Helper function to create a tensor from Numpy of strings
static Status CreateTensorFromNumpyString(std::shared_ptr<Tensor> *ptr, py::array arr);
/// Create a Tensor from a given py::array
/// \param[in] arr py::array
/// \param[out] out Created tensor
/// \return Status Code
static Status CreateFromNpArray(const py::array &arr, TensorPtr *out);
#endif
// A static factory method to create a Tensor from a given list of strings.
// @param ptr output argument to hold the created Tensor
// @param strings elements of the tensor
// @param shape shape of the tensor
// @return Status Code
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::vector<std::string> &strings,
const TensorShape &shape = TensorShape::CreateUnknownRankShape());
/// Create a tensor of type DE_STRING from a BytesList.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the outout tensor
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape, TensorPtr *out);
// create tensor from protobuf bytelist with strings
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape);
/// Create a tensor of type UINT8 or INT8 from a BytesList.
/// The tensor will be padded with ' ' to reach the required pad_size.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the output tensor
/// \param[in] type type of created tensor. Should be DE_UINT8 or INT8
/// \param[in] pad_size The size of the tensor after padding
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape,
const DataType &type, dsize_t pad_size, TensorPtr *out);
// A static factory method to create a Tensor from a given list of numbers.
// @param ptr output argument to hold the created Tensor
// @param items elements of the tensor
// @param shape shape of the tensor
// @return Status Code
/// Create a Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::vector<T> &items,
const TensorShape &shape_req = TensorShape::CreateUnknownRankShape()) {
static Status CreateFromVector(const std::vector<T> &items, const TensorShape &shape, TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
DataType type = DataType::FromCType<T>();
// if items is empty, items_ptr would be nullptr. CreateFromMemory will handle this case.
auto items_ptr = reinterpret_cast<const uchar *>(&items[0]);
TensorShape shape = shape_req;
if (!shape.known()) {
shape = TensorShape({static_cast<dsize_t>(items.size())});
}
return CreateTensor(ptr, TensorImpl::kFlexible, shape, type, items_ptr);
return CreateFromMemory(shape, type, items_ptr, out);
}
// A static factory method to create a Tensor from a given number.
// @param ptr output argument to hold the created Tensor
// @param item value
// @return Status Code
/// Create a 1D Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const T &item) {
return CreateTensor<T>(ptr, {item}, TensorShape::CreateScalar());
static Status CreateFromVector(const std::vector<T> &items, TensorPtr *out) {
return CreateFromVector(items, TensorShape({static_cast<dsize_t>(items.size())}), out);
}
// Create tensor from protobuf bytelist with uint8 or int8 types
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const dataengine::BytesList &bytes_list,
const TensorShape &shape, const DataType &type, dsize_t pad_size);
/// Create a numeric scalar Tensor from the given value.
/// \tparam T type of value
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <typename T>
static Status CreateScalar(const T &item, TensorPtr *out) {
DataType type = DataType::FromCType<T>();
auto item_ptr = reinterpret_cast<const uchar *>(&item);
return CreateFromMemory(TensorShape::CreateScalar(), type, item_ptr, out);
}
static Status CreateTensor(std::shared_ptr<Tensor> *ptr, const std::string &path);
/// Create a tensor from a binary file on disk.
/// \param[in] path file to be read
/// \param[out] out Created Tensor
/// \return Status code
static Status CreateFromFile(const std::string &path, TensorPtr *out);
// Copy raw data of a array based on shape and strides to the destination pointer
// @param dst Pointer to the destination array where the content is to be copied
// @param src Pointer to the source of strided array to be copied
// @param shape - shape of the source array
// @param strides - strides of the source array
// @param type_size - number of bytes needed to store one array element's type
// @return Status Code
static Status CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size);
// Release the memory using the allocator
/// Destruct the tensor and release the memory using the allocator
virtual ~Tensor();
// compare the tensor shape and data
/// Equality operator. compares tensor shape, type and data
/// \param[in] rhs Tensor to be compared with
/// \return bool
bool operator==(const Tensor &rhs) const;
bool operator!=(const Tensor &rhs) const { return !((*this) == rhs); }
// Get item located at `index`, caller needs to provide the type.
// @tparam T
// @param index vector<dsize_t>
// @return return the item specified at index
/// Get item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return the item specified at index
template <typename T>
Status GetItemAt(T *o, const std::vector<dsize_t> &index) const;
// Get string located at `index`.
// @param index vector<dsize_t>
// @return return std::string_view specified at index
/// Get string located at `index`.
/// \param[in] index vector<dsize_t>
/// \return return std::string_view specified at index
Status GetItemAt(std::string_view *o, const std::vector<dsize_t> &index) const;
template <typename T>
@ -225,22 +211,21 @@ class Tensor {
template <typename T>
Status GetFloatAt(T *o, const std::vector<dsize_t> &index) const;
// set item at location specified by index
// @tparam `T`
// @param index
// @param value of type `T`
/// set item at location specified by index
/// \tparam `T`
/// \param[in] index
/// \param[in] value of type `T`
template <typename T>
Status SetItemAt(const std::vector<dsize_t> &index, const T &value) {
RETURN_IF_NOT_OK(AllocateBuffer(SizeInBytes()));
T *ptr = nullptr;
RETURN_IF_NOT_OK(GetItemPtr<T>(&ptr, index));
*ptr = value;
return Status::OK();
}
// set string item at location specified by index
// @param index
// @param value of type std::string
/// set string item at location specified by index
/// \param[in] index
/// \param[in] value of type std::string
Status SetItemAt(const std::vector<dsize_t> &index, const std::string &value) {
RETURN_UNEXPECTED_IF_NULL(data_);
uchar *ptr = nullptr;
@ -253,7 +238,8 @@ class Tensor {
return Status::OK();
}
// fill tensor with Zeros. Does not support strings.
/// fill tensor with Zeros. Does not support strings.
Status Zero() {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use Zero on tensor of strings..");
dsize_t size = SizeInBytes();
@ -262,13 +248,12 @@ class Tensor {
return Status::OK();
}
// Fill all elements in the Tensor with the given value of type `T`. Does not support strings.
// @tparam T
// @param value
/// Fill all elements in the Tensor with the given value of type `T`. Does not support strings.
/// \tparam T
/// \param value[in]
template <typename T>
Status Fill(const T &value) {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use fill on tensor of strings.");
RETURN_IF_NOT_OK(AllocateBuffer(SizeInBytes()));
int64_t cellSize = type_.SizeInBytes();
if ((data_ != nullptr) && type_.IsCompatible<T>()) {
for (dsize_t i = 0; i < Size(); i++) {
@ -283,91 +268,86 @@ class Tensor {
}
}
// Getter function for shape
// @return
/// Getter function for shape
/// \return
const TensorShape &shape() const { return shape_; }
/// Check if tensor has data
/// \return bool - true if tensor is empty
bool HasData() const;
bool HasData() const { return data_ != nullptr; }
// Reshape the tensor. The given shape should have the same number of elements in the Tensor
// @param shape
/// Reshape the tensor. The given shape should have the same number of elements in the Tensor
/// \param shape
virtual Status Reshape(const TensorShape &shape);
// @return number of elements in this tensor
/// \return number of elements in this tensor
dsize_t Size() const { return shape().NumOfElements(); }
// @return the number of bytes this tensor is needs
/// \return the number of bytes this tensor is needs
dsize_t SizeInBytes() const {
if (data_end_ == nullptr) return type_.SizeInBytes() * shape_.NumOfElements();
return data_end_ - data_;
}
// @return the rank of the tensor
/// \return the rank of the tensor
dsize_t Rank() const { return shape().Rank(); }
// Get the starting memory address as a constant for the data of the tensor. This potentially
// drives an allocation if the data area.
// @return const unsigned char*
const unsigned char *GetBuffer() const;
/// Get the starting memory address as a constant for the data of the tensor. This potentially
/// drives an allocation if the data area.
/// \return const unsigned char*
const unsigned char *GetBuffer() const { return data_; }
// Skip the offsets and returns the start of the buffer where the real strings is stored. Caller needs to check if the
// tensor's type is a string, otherwise undefined address would be returned.
// @return address of the first string of the tensor.
uchar *GetStringsBuffer() const { return data_ + kOffsetSize * shape_.NumOfElements() + kOffsetSize; }
// Getter of the type
// @return
/// Getter of the type
/// \return
DataType type() const { return type_; }
// Provide stream operator for displaying it
// @param output stream
// @param so the Tensor object to be printed
// @return output stream
/// Provide stream operator for displaying it
/// \param output stream
/// \param so the Tensor object to be printed
/// \return output stream
friend std::ostream &operator<<(std::ostream &out, const Tensor &so) {
so.Print(out);
return out;
}
// Invalidate this Tensor by setting the type and shape to unknown and MData to null.
// Calling this method will make the Tensor and its data inaccessible, use it with caution.
/// Invalidate this Tensor by setting the type and shape to unknown and MData to null.
/// Calling this method will make the Tensor and its data inaccessible, use it with caution.
void Invalidate();
// Copy input tensor into self at the location index.
// Index is a vector of axises which can be incomplete:
// Ex: shape <2,3>, inserting into index {0} will replace the first row. index {1,2} will replace the last cell.
// @param index
// @param input
// @return Status code
/// Copy input tensor into self at the location index.
/// Index is a vector of axises which can be incomplete:
/// Ex: shape <2,3>, inserting into index {0} will replace the first row. index {1,2} will replace the last cell.
/// \param index
/// \param input
/// \return Status code
Status InsertTensor(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input);
// Find the address of the given index. Used in InsertTensor.
// Example:
// Tensor t= [[1,2],[3,4]] , StartAddrOfIndex({0}) -> &1
// @param index incomplete index
// @param output: startAddrofIndex
// @param output: remaining
// @return Status code
/// Find the address of the given index. Used in InsertTensor.
/// Example:
/// Tensor t= [[1,2],[3,4]] , StartAddrOfIndex({0}) -> &1
/// \param index incomplete index
/// \param output: startAddrofIndex
/// \param output: remaining
/// \return Status code
Status StartAddrOfIndex(std::vector<dsize_t> ind, uchar **start_addr_of_index, TensorShape *remaining);
// Expand the shape of the Tensor with one extra dimension.
// For example, if the shape is <512,512,3>:
// *- ExpandDim(0) gives: <1,512,512,3>
// *- ExpandDim(1) gives: <512,1,512,3>
// *- ExpandDim(3) gives: <512,512,3,1>
// @param axis location of the dim
/// Expand the shape of the Tensor with one extra dimension.
/// For example, if the shape is <512,512,3>:
/// *- ExpandDim(0) gives: <1,512,512,3>
/// *- ExpandDim(1) gives: <512,1,512,3>
/// *- ExpandDim(3) gives: <512,512,3,1>
/// \param axis location of the dim
virtual Status ExpandDim(const dsize_t &axis);
virtual void Squeeze();
// Calculates the strides of the Tensor
// Ex: Tensor of shape <4,2,2> and type DE_UINT8 (1 byte)
// The strides will be {6,2,1}.
// Ex: Tensor of shape <4,2,2> and type DE_UINT32 (4 byte)
// The strides will be {24,8,4}.
// @return vector of integers
std::vector<dsize_t> Strides();
/// Calculates the strides of the Tensor
/// Ex: Tensor of shape <4,2,2> and type DE_UINT8 (1 byte)
/// The strides will be {6,2,1}.
/// Ex: Tensor of shape <4,2,2> and type DE_UINT32 (4 byte)
/// The strides will be {24,8,4}.
/// \return vector of integers
std::vector<dsize_t> Strides() const;
std::string ToString() {
std::stringstream ss;
@ -375,26 +355,26 @@ class Tensor {
return ss.str();
}
// Handle negative indices.
/// Handle negative indices.
static inline dsize_t HandleNeg(dsize_t index, dsize_t length) { return (index < 0) ? (index + length) : index; }
// Slice tensor bases on the given indicies. Copy the sliced data into out tensor. Only rank1 tensors are supported.
// Based on the type of tensor, SliceNumeric or SliceString will be called
// @param out Tensor
// @param indices vector of indices
// @return Status error code
Status Slice(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice tensor bases on the given indicies. Copy the sliced data into out tensor. Only rank1 tensors are supported.
/// Based on the type of tensor, SliceNumeric or SliceString will be called
/// \param[out] out Tensor
/// \param[in] indices vector of indices
/// \return Status error code
Status Slice(TensorPtr *out, const std::vector<dsize_t> &indices);
// Slice numeric tensors.
Status SliceNumeric(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice numeric tensors.
Status SliceNumeric(TensorPtr *out, const std::vector<dsize_t> &indices);
// Slice string tensors
Status SliceString(std::shared_ptr<Tensor> *out, const std::vector<dsize_t> &indices);
/// Slice string tensors
Status SliceString(TensorPtr *out, const std::vector<dsize_t> &indices);
#ifdef ENABLE_PYTHON
// Constructs numpy array from input tensor
// @param data this data is the location of python data
// @return Status code
/// Constructs numpy array from input tensor
/// \param[in] data this data is the location of python data
/// \return Status code
Status GetDataAsNumpy(py::array *data);
Status GetDataAsNumpyStrings(py::array *data);
@ -402,12 +382,12 @@ class Tensor {
static Status GetBufferInfo(Tensor *t, py::buffer_info *out);
#endif
// Concatenate based on given tensor, can fill in current tensor with a smaller one, unlike InsertTensor
/// Concatenate based on given tensor, can fill in current tensor with a smaller one, unlike InsertTensor
Status Concatenate(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input);
// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
// @tparam T type of values in the Tensor Iterator
/// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
/// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
/// \tparam T type of values in the Tensor Iterator
template <typename T, bool = true>
class TensorIterator {
public:
@ -498,7 +478,7 @@ class Tensor {
};
// Specialization of TensorIterator for strings. It returns std::string_view for every item.
// @tparam DUMMY, used to mbe able to specialize the inner class
// \tparam DUMMY, used to mbe able to specialize the inner class
template <bool DUMMY>
class TensorIterator<std::string_view, DUMMY> {
public:
@ -585,84 +565,192 @@ class Tensor {
const char *data_;
};
// Return a TensorIterator that points to the start of the Tensor.
// It's the user responsibility to use the correct type that matches the Tensor type
// @param T The type of values in the Tensor
// @return TensorIterator
/// Return a TensorIterator that points to the start of the Tensor.
/// It's the user responsibility to use the correct type that matches the Tensor type
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> begin() {
AllocateBuffer(SizeInBytes());
return TensorIterator<T>(data_);
}
// Return a linear iterator that points to the place after the last element of the Tensor.
// @tparam T The type of values in the Tensor
// @return TensorIterator
/// Return a linear iterator that points to the place after the last element of the Tensor.
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> end() {
return TensorIterator<T>(data_end_);
}
// Copies the last dimension at `index` from Tensor `src` to this Tensor.
// @param src Tensor
// @param index vector to the start of the dimension. The last dim should be 0
// @return Status
/// Copies the last dimension at `index` from Tensor `src` to this Tensor.
/// \param[in] src Tensor
/// \param[in] index vector to the start of the dimension. The last dim should be 0
/// \return Status
Status CopyLastDimAt(const std::shared_ptr<Tensor> &src, const std::vector<dsize_t> &index);
protected:
// Get the starting memory address for the data of the tensor. This potentially
// drives an allocation if the data is null.
// @return unsigned char*
unsigned char *GetMutableBuffer();
/// Allocate memory for the tensor using the data_allocator
/// \param[in] length number of bytes to be allocated
/// \return Error Status
Status AllocateBuffer(const dsize_t &length);
// A function that prints Tensor recursively, first called by print
// @param out
// @param cur_dim
// @param cur_index
/// Get the starting memory address for the data of the tensor. This potentially
/// drives an allocation if the data is null.
/// \return unsigned char*
unsigned char *GetMutableBuffer() { return data_; }
/// A function that prints Tensor recursively, first called by print
/// \param[in] out
/// \param[in] cur_dim
/// \param[in] cur_index
void PrintRecursive(std::ostream &out, int32_t cur_dim, const std::vector<dsize_t> &cur_index) const;
// A function that prints info about the tensor
// @param out output stream
/// A function that prints info about the tensor
/// \param[out] out output stream
void Print(std::ostream &out) const;
// A function that print the value as specified by its index
// @param index vector representing the index
// @param out
/// A function that print the value as specified by its index
/// \param[in] index vector representing the index
/// \param[out] out
void PrintItemAt(const std::vector<dsize_t> &index, std::ostream &out) const;
// Get pointer to item located at `index`, caller needs to provide the type.
// @tparam T
// @param index vector<dsize_t>
// @return return a pointer to the item specified at index of type `T`
/// Get pointer to item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the item specified at index of type `T`
template <typename T>
Status GetItemPtr(T **, const std::vector<dsize_t> &index) const;
// Get pointer to string located at `index` and the length of string
// @param index vector<dsize_t>
// @return return a pointer to the string specified at index and the length of the string
/// Get pointer to string located at `index` and the length of string
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the string specified at index and the length of the string
Status GetItemPtr(uchar **, const std::vector<dsize_t> &index, offset_t *length = nullptr) const;
// Given a flat index of an item string, return the start and length of the item
// @param index flat index of the item
// @return start address of the ths string
// @return length of the string
/// Given a flat index of an item string, return the start and length of the item
/// \param[in] index flat index of the item
/// \param[out] start address of the ths string
/// \param[out] length of the string
Status GetStringAt(dsize_t index, uchar **string_start, offset_t *length) const;
// all access to shape_ should be via shape
/// Skip the offsets and returns the start of the buffer where the real strings is stored. Caller needs to check if
/// the tensor's type is a string, otherwise undefined address would be returned. \return address of the first string
/// of the tensor.
uchar *GetStringsBuffer() const { return data_ + kOffsetSize * shape_.NumOfElements() + kOffsetSize; }
/// all access to shape_ should be via shape
TensorShape shape_;
// data type of tensor
/// data type of tensor
DataType type_;
// pointer to the start of the physical data
/// pointer to the start of the physical data
unsigned char *data_;
// An allocator for data_
/// An allocator for data_
CharAllocPtr data_allocator_;
// pointer to the end of the physical data
/// pointer to the end of the physical data
unsigned char *data_end_ = nullptr;
private:
/// Helper function to create a tensor from Numpy array of strings
/// \param[in] arr Numpy array
/// \param[out] out Created Tensor
/// \return Status
static Status CreateFromNpString(py::array arr, TensorPtr *out);
/// Copy raw data of a array based on shape and strides to the destination pointer
/// \param dst [out] Pointer to the destination array where the content is to be copied
/// \param[in] src Pointer to the source of strided array to be copied
/// \param[in] shape shape of the source array
/// \param[in] strides strides of the source array
/// \param[in] type_size number of bytes needed to store one array element's type
/// \return Status Code
static Status CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size);
/// const of the size of the offset variable
static constexpr uint8_t kOffsetSize = sizeof(offset_t);
};
template <>
inline Tensor::TensorIterator<std::string_view> Tensor::end<std::string_view>() {
return TensorIterator<std::string_view>(data_, shape_.NumOfElements());
}
/// Create a Tensor from a given list of strings.
/// @note: The memory layout of a Tensor of strings consists of the Offset_array followed by the strings.
/// The offset array will store one extra value to find the length of the last string.
/// OFFSET_1, OFFSET_2, ..., OFFSET_n+1, STRING_1, STRING_2, ..., STRING_n
/// The value of each offset is the start index of the corresponding string
/// Offsets is of type offset_t
/// strings will ne null-terminated
/// example: Tensor(['abc', 'de'], shape={2}, type=DE_STRING)
/// |----------------------------------------------------------------|
/// | OFFSET ARRAY | STRINGS |
/// | bytes 0-3 | bytes 3-6 | bytes 7-10 | bytes 11-14 | bytes 15-17 |
/// | 11 | 15 | 18 | abc\0 | de\0 |
/// |----------------------------------------------------------------|
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <>
inline Status Tensor::CreateFromVector<std::string>(const std::vector<std::string> &items, const TensorShape &shape,
TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, TensorShape({static_cast<dsize_t>(items.size())}),
DataType(DataType::DE_STRING));
if (items.size() == 0) {
if (shape.known()) {
return (*out)->Reshape(shape);
}
}
auto length_sum = [](dsize_t sum, const std::string &s) { return s.length() + sum; };
dsize_t total_length = std::accumulate(items.begin(), items.end(), 0, length_sum);
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize + 1) * (*out)->shape_.NumOfElements() + kOffsetSize + total_length;
(*out)->AllocateBuffer(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>((*out)->data_);
uchar *buf = (*out)->GetStringsBuffer();
offset_t offset = buf - (*out)->data_; // the first string will start here
uint32_t i = 0;
for (const auto &str : items) {
// insert the start index of the string.
offset_arr[i++] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s((*out)->data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) MS_LOG(ERROR) << "Cannot copy string into Tensor";
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
// length[last_element] = offset_arr[last_element + 1] - offset_arr[last_element]
offset_arr[i] = offset;
(*out)->data_end_ = (*out)->data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
if (shape.known()) {
RETURN_IF_NOT_OK((*out)->Reshape(shape));
}
return Status::OK();
}
/// Create a string scalar Tensor from the given value.
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <>
inline Status Tensor::CreateScalar<std::string>(const std::string &item, TensorPtr *out) {
return CreateFromVector<std::string>({item}, TensorShape::CreateScalar(), out);
}
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_CORE_TENSOR_H_

View File

@ -97,7 +97,7 @@ Status OneHotEncoding(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *ou
if (input->Rank() == 1) num_elements = input->shape()[0];
TensorShape out_shape({num_elements, num_classes});
std::shared_ptr<Tensor> out;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, TensorImpl::kFlexible, out_shape, input->type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(out_shape, input->type(), &out));
RETURN_IF_NOT_OK(out->Zero());
for (dsize_t i = 0; i < num_elements; ++i) {
if (input->type().IsUnsignedInt()) {
@ -133,7 +133,9 @@ Status Fill(const std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output
fill_output = fill_value;
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, TensorImpl::kFlexible, input_shape, input_type));
if (input_type.IsNumeric()) {
RETURN_IF_NOT_OK(Tensor::CreateEmpty(input_shape, input_type, &out));
}
switch (input_type.value()) {
case DataType::DE_BOOL: {
@ -216,7 +218,7 @@ Status Fill(const std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output
for (int i = 0; i < input_shape.NumOfElements(); i++) {
strings.emplace_back(fill_string);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, strings, input_shape));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(strings, input_shape, &out));
break;
}
case DataType::DE_UNKNOWN: {
@ -285,9 +287,8 @@ void CastFrom(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
// Type cast operator
Status TypeCast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const DataType &data_type) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), data_type));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(input->shape(), data_type, output));
RETURN_IF_NOT_OK((*output)->AllocateBuffer((*output)->SizeInBytes()));
switch (input->type().value()) {
case DataType::DE_BOOL:
CastFrom<bool>(input, output);
@ -335,8 +336,7 @@ Status TypeCast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *o
Status ToFloat16(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
// initiate new tensor for type cast
DataType new_type = DataType("float16");
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), new_type));
RETURN_IF_NOT_OK((*output)->AllocateBuffer((*output)->SizeInBytes()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(input->shape(), new_type, output));
auto in_itr = input->begin<float>();
auto out_itr = (*output)->begin<float16>();
@ -387,7 +387,7 @@ Status PadEndNumeric(const std::shared_ptr<Tensor> &src, std::shared_ptr<Tensor>
(*dst) = src; // if no padding, copy the pointer
} else {
CHECK_FAIL_RETURN_UNEXPECTED(src->Rank() == pad_shape.size(), "Pad to diff rank not allowed");
RETURN_IF_NOT_OK(Tensor::CreateTensor(dst, TensorImpl::kFlexible, TensorShape(pad_shape), src->type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape(pad_shape), src->type(), dst));
auto tensor_type = src->type().value();
if (pad_val == 0) { // if pad with zero, don't care what type it is
RETURN_IF_NOT_OK((*dst)->Zero());
@ -447,7 +447,7 @@ Status PadEndString(const std::shared_ptr<Tensor> &src, std::shared_ptr<Tensor>
std::vector<dsize_t> cur_ind(src->Rank(), 0);
std::vector<std::string> strings;
RETURN_IF_NOT_OK(PadEndStringHelper(src, &strings, TensorShape(pad_shape), cur_ind, 0, pad_val));
RETURN_IF_NOT_OK(Tensor::CreateTensor(dst, strings, TensorShape(pad_shape)));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(strings, TensorShape(pad_shape), dst));
}
return Status::OK();
}
@ -521,7 +521,7 @@ Status Mask(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *outpu
"Cannot convert constant value to the type of the input tensor.");
CHECK_FAIL_RETURN_UNEXPECTED(value->shape() == TensorShape::CreateScalar(), "Value is not a scalar");
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), DataType(DataType::DE_BOOL)));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(input->shape(), DataType(DataType::DE_BOOL), output));
std::unique_ptr<TypeCastOp> value_cast_op(new TypeCastOp(input->type()));
std::shared_ptr<Tensor> casted_value;
@ -629,7 +629,7 @@ Status ConcatenateHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
std::shared_ptr<Tensor> out;
if (input->type().IsNumeric()) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, TensorImpl::kFlexible, t, input->type()));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(t, input->type(), &out));
RETURN_IF_NOT_OK(out->Concatenate({0}, input));
RETURN_IF_NOT_OK(out->Concatenate({input->shape()[0]}, append));
@ -645,7 +645,7 @@ Status ConcatenateHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
for (; itr != append->end<std::string_view>(); itr++) {
strings.emplace_back(*itr);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, strings, t));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(strings, t, &out));
*output = out;
}

View File

@ -26,7 +26,7 @@ Status DuplicateOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
CHECK_FAIL_RETURN_UNEXPECTED(input.size() == 1, "Input should be one tensor");
std::shared_ptr<Tensor> out;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, input[0]));
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(input[0], &out));
output->push_back(input[0]);
output->push_back(out);
return Status::OK();

View File

@ -63,9 +63,8 @@ int GetCVBorderType(BorderType type) {
Status Flip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output, int flip_code) {
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
RETURN_IF_NOT_OK(output_cv->AllocateBuffer(output_cv->SizeInBytes()));
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
if (input_cv->mat().data) {
try {
@ -110,8 +109,9 @@ Status Resize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
TensorShape shape{output_height, output_width};
int num_channels = input_cv->shape()[2];
if (input_cv->Rank() == 3) shape = shape.AppendDim(num_channels);
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(shape, input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(shape, input_cv->type(), &output_cv));
auto cv_mode = GetCVInterpolationMode(mode);
cv::resize(in_image, output_cv->mat(), cv::Size(output_width, output_height), fx, fy, cv_mode);
*output = std::static_pointer_cast<Tensor>(output_cv);
@ -147,8 +147,8 @@ Status DecodeCv(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *o
RETURN_STATUS_UNEXPECTED(err);
}
cv::cvtColor(img_mat, img_mat, static_cast<int>(cv::COLOR_BGR2RGB));
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(img_mat);
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(img_mat, &output_cv));
*output = std::static_pointer_cast<Tensor>(output_cv);
return Status::OK();
} catch (const cv::Exception &e) {
@ -309,7 +309,8 @@ Status JpegCropAndDecode(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
// three number of output components, always convert to RGB and output
constexpr int kOutNumComponents = 3;
TensorShape ts = TensorShape({crop_h, crop_w, kOutNumComponents});
auto output_tensor = std::make_shared<Tensor>(ts, DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> output_tensor;
RETURN_IF_NOT_OK(Tensor::CreateEmpty(ts, DataType(DataType::DE_UINT8), &output_tensor));
const int buffer_size = output_tensor->SizeInBytes();
JSAMPLE *buffer = reinterpret_cast<JSAMPLE *>(&(*output_tensor->begin<uint8_t>()));
const int max_scanlines_to_read = skipped_scanlines + crop_h;
@ -331,8 +332,8 @@ Status Rescale(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *ou
RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor");
}
cv::Mat input_image = input_cv->mat();
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(input_cv->shape(), DataType(DataType::DE_FLOAT32));
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), DataType(DataType::DE_FLOAT32), &output_cv));
try {
input_image.convertTo(output_cv->mat(), CV_32F, rescale, shift);
*output = std::static_pointer_cast<Tensor>(output_cv);
@ -354,8 +355,8 @@ Status Crop(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *outpu
TensorShape shape{h, w};
int num_channels = input_cv->shape()[2];
if (input_cv->Rank() == 3) shape = shape.AppendDim(num_channels);
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(shape, input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(shape, input_cv->type(), &output_cv));
cv::Rect roi(x, y, w, h);
(input_cv->mat())(roi).copyTo(output_cv->mat());
*output = std::static_pointer_cast<Tensor>(output_cv);
@ -386,10 +387,11 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output)
int height = input_cv->shape()[0];
int width = input_cv->shape()[1];
auto output_cv = std::make_unique<CVTensor>(TensorShape{num_channels, height, width}, input_cv->type());
std::shared_ptr<CVTensor> output_cv;
CVTensor::CreateEmpty(TensorShape{num_channels, height, width}, input_cv->type(), &output_cv);
for (int i = 0; i < num_channels; ++i) {
cv::Mat mat;
RETURN_IF_NOT_OK(output_cv->Mat({i}, &mat));
RETURN_IF_NOT_OK(output_cv->MatAtIndex({i}, &mat));
cv::extractChannel(input_cv->mat(), mat, i);
}
*output = std::move(output_cv);
@ -406,8 +408,9 @@ Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *ou
if (input_cv->shape().Size() != 3 || num_channels != 3) {
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels does not equal 3");
}
auto output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_BGR2RGB));
*output = std::static_pointer_cast<Tensor>(output_cv);
return Status::OK();
@ -440,8 +443,8 @@ Status CropAndResize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tenso
TensorShape shape{target_height, target_width};
int num_channels = input_cv->shape()[2];
if (input_cv->Rank() == 3) shape = shape.AppendDim(num_channels);
std::shared_ptr<CVTensor> cvt_out = std::make_shared<CVTensor>(shape, input_cv->type());
RETURN_UNEXPECTED_IF_NULL(cvt_out);
std::shared_ptr<CVTensor> cvt_out;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(shape, input_cv->type(), &cvt_out));
cv::resize(cv_in(roi), cvt_out->mat(), cv::Size(target_width, target_height), 0, 0, cv_mode);
*output = std::static_pointer_cast<Tensor>(cvt_out);
return Status::OK();
@ -475,8 +478,7 @@ Status Rotate(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
if (!expand) {
// this case means that the shape doesn't change, size stays the same
// We may not need this memcpy if it is in place.
output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
// using inter_nearest to comply with python default
cv::warpAffine(input_img, output_cv->mat(), rot, input_img.size(), GetCVInterpolationMode(interpolation),
cv::BORDER_CONSTANT, fill_color);
@ -489,7 +491,7 @@ Status Rotate(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
// use memcpy and don't compute the new shape since openCV has a rounding problem
cv::warpAffine(input_img, output_img, rot, bbox.size(), GetCVInterpolationMode(interpolation),
cv::BORDER_CONSTANT, fill_color);
output_cv = std::make_shared<CVTensor>(output_img);
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(output_img, &output_cv));
RETURN_UNEXPECTED_IF_NULL(output_cv);
}
*output = std::static_pointer_cast<Tensor>(output_cv);
@ -506,8 +508,8 @@ Status Normalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor");
}
cv::Mat in_image = input_cv->mat();
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(input_cv->shape(), DataType(DataType::DE_FLOAT32));
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), DataType(DataType::DE_FLOAT32), &output_cv));
mean->Squeeze();
if (mean->type() != DataType::DE_FLOAT32 || mean->Rank() != 1 || mean->shape()[0] != 3) {
std::string err_msg = "Mean tensor should be of size 3 and type float.";
@ -548,8 +550,8 @@ Status AdjustBrightness(const std::shared_ptr<Tensor> &input, std::shared_ptr<Te
if (input_cv->Rank() != 3 || num_channels != 3) {
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels does not equal 3");
}
auto output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
output_cv->mat() = input_img * alpha;
*output = std::static_pointer_cast<Tensor>(output_cv);
} catch (const cv::Exception &e) {
@ -572,8 +574,8 @@ Status AdjustContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tens
cv::Mat gray, output_img;
cv::cvtColor(input_img, gray, CV_RGB2GRAY);
int mean_img = static_cast<int>(cv::mean(gray).val[0] + 0.5);
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
output_img = cv::Mat::zeros(input_img.rows, input_img.cols, CV_8UC1);
output_img = output_img + mean_img;
cv::cvtColor(output_img, output_img, CV_GRAY2RGB);
@ -680,7 +682,9 @@ Status AutoContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor
cv::Mat result;
cv::merge(image_result, result);
result.convertTo(result, input_cv->mat().type());
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(result);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(result, &output_cv));
(*output) = std::static_pointer_cast<Tensor>(output_cv);
(*output) = std::static_pointer_cast<Tensor>(output_cv);
(*output)->Reshape(input->shape());
} catch (const cv::Exception &e) {
@ -700,8 +704,8 @@ Status AdjustSaturation(const std::shared_ptr<Tensor> &input, std::shared_ptr<Te
if (input_cv->Rank() != 3 || num_channels != 3) {
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels does not equal 3");
}
auto output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
cv::Mat output_img = output_cv->mat();
cv::Mat gray;
cv::cvtColor(input_img, gray, CV_RGB2GRAY);
@ -729,8 +733,8 @@ Status AdjustHue(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
if (input_cv->Rank() != 3 || num_channels != 3) {
RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels does not equal 3");
}
auto output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
cv::Mat output_img;
cv::cvtColor(input_img, output_img, CV_RGB2HSV_FULL);
for (int y = 0; y < output_img.cols; y++) {
@ -781,7 +785,8 @@ Status Equalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *o
}
cv::Mat result;
cv::merge(image_result, result);
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(result);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(result, &output_cv));
(*output) = std::static_pointer_cast<Tensor>(output_cv);
(*output)->Reshape(input->shape());
} catch (const cv::Exception &e) {
@ -867,8 +872,8 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output
} else {
cv::copyMakeBorder(input_cv->mat(), out_image, pad_top, pad_bottom, pad_left, pad_right, b_type);
}
std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(out_image);
RETURN_UNEXPECTED_IF_NULL(output_cv);
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateFromMat(out_image, &output_cv));
// pad the dimension if shape information is only 2 dimensional, this is grayscale
int num_channels = input_cv->shape()[2];
if (input_cv->Rank() == 3 && num_channels == 1 && output_cv->Rank() == 2) output_cv->ExpandDim(2);
@ -932,7 +937,7 @@ Status UpdateBBoxesForCrop(std::shared_ptr<Tensor> *bboxList, size_t *bboxCount,
}
}
std::shared_ptr<Tensor> retV;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&retV, copyVals, TensorShape({static_cast<dsize_t>(*bboxCount), bboxDim})));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(copyVals, TensorShape({static_cast<dsize_t>(*bboxCount), bboxDim}), &retV));
(*bboxList) = retV; // reset pointer
return Status::OK();
}

View File

@ -40,8 +40,8 @@ Status InvertOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
if (num_channels != 3) {
RETURN_STATUS_UNEXPECTED("The shape is incorrect: num of channels != 3");
}
auto output_cv = std::make_shared<CVTensor>(input_cv->shape(), input_cv->type());
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(input_cv->shape(), input_cv->type(), &output_cv));
RETURN_UNEXPECTED_IF_NULL(output_cv);
output_cv->mat() = cv::Scalar::all(255) - input_img;

View File

@ -24,20 +24,14 @@
namespace mindspore {
namespace dataset {
NormalizeOp::NormalizeOp(float mean_r, float mean_g, float mean_b, float std_r, float std_g, float std_b) {
int size[] = {3};
cv::Mat mean_cv(1, size, CV_32F);
mean_cv.at<float>(0) = mean_r;
mean_cv.at<float>(1) = mean_g;
mean_cv.at<float>(2) = mean_b;
mean_ = std::make_shared<CVTensor>(mean_cv);
mean_->Squeeze();
cv::Mat std_cv(1, size, CV_32F);
std_cv.at<float>(0) = std_r;
std_cv.at<float>(1) = std_g;
std_cv.at<float>(2) = std_b;
std_ = std::make_shared<CVTensor>(std_cv);
std_->Squeeze();
Status s = Tensor::CreateFromVector<float>({mean_r, mean_g, mean_b}, &mean_);
if (s.IsError()) {
MS_LOG(ERROR) << "Could not create mean tensor.";
}
s = Tensor::CreateFromVector<float>({std_r, std_g, std_b}, &std_);
if (s.IsError()) {
MS_LOG(ERROR) << "Could not create std tensor.";
}
}
Status NormalizeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
@ -47,9 +41,7 @@ Status NormalizeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_pt
}
void NormalizeOp::Print(std::ostream &out) const {
out << "NormalizeOp, mean: " << mean_->mat().at<float>(0) << ", " << mean_->mat().at<float>(1) << ", "
<< mean_->mat().at<float>(2) << "std: " << std_->mat().at<float>(0) << ", " << std_->mat().at<float>(1) << ", "
<< std_->mat().at<float>(2) << std::endl;
out << "NormalizeOp, mean: " << mean_ << std::endl << "std: " << std_ << std::endl;
}
} // namespace dataset
} // namespace mindspore

View File

@ -39,8 +39,8 @@ class NormalizeOp : public TensorOp {
std::string Name() const override { return kNormalizeOp; }
private:
std::shared_ptr<CVTensor> mean_;
std::shared_ptr<CVTensor> std_;
std::shared_ptr<Tensor> mean_;
std::shared_ptr<Tensor> std_;
};
} // namespace dataset
} // namespace mindspore

View File

@ -49,7 +49,7 @@ Status PyFuncOp::Compute(const TensorRow &input, TensorRow *output) {
if (py::isinstance<py::array>(ret_py_obj)) {
// In case of a n-1 mapping, the return value will be a numpy array
std::shared_ptr<Tensor> out;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, ret_py_obj.cast<py::array>()));
RETURN_IF_NOT_OK(Tensor::CreateFromNpArray(ret_py_obj.cast<py::array>(), &out));
output->push_back(out);
} else if (py::isinstance<py::tuple>(ret_py_obj)) {
// In case of a n-m mapping, the return value will be a tuple of numpy arrays
@ -61,7 +61,7 @@ Status PyFuncOp::Compute(const TensorRow &input, TensorRow *output) {
goto ShapeMisMatch;
}
std::shared_ptr<Tensor> out;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&out, ret_py_ele.cast<py::array>()));
RETURN_IF_NOT_OK(Tensor::CreateFromNpArray(ret_py_ele.cast<py::array>(), &out));
output->push_back(out);
}
} else {

View File

@ -136,8 +136,7 @@ Status BasicTokenizerOp::CaseFoldWithoutUnusedWords(const std::shared_ptr<Tensor
for (auto iter = input->begin<std::string_view>(); iter != input->end<std::string_view>(); iter++) {
RETURN_IF_NOT_OK(CaseFoldWithoutUnusedWords(*iter, kUnusedWords, &strs[i++]));
}
*output = std::make_shared<Tensor>(std::move(strs), input->shape());
return Status::OK();
return Tensor::CreateFromVector(strs, input->shape(), output);
}
Status BasicTokenizerOp::Compute(const TensorRow &input, TensorRow *output) {

View File

@ -39,8 +39,7 @@ Status CaseFoldOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr
nfkc_case_fold->normalizeUTF8(0, icu::StringPiece((*iter).data(), (*iter).size()), sink, nullptr, error);
CHECK_FAIL_RETURN_UNEXPECTED(error.isSuccess(), "normalizeUTF8 failed.");
}
*output = std::make_shared<Tensor>(std::move(strs), input->shape());
return Status::OK();
return Tensor::CreateFromVector(strs, input->shape(), output);
}
} // namespace dataset
} // namespace mindspore

View File

@ -33,12 +33,7 @@ Status SlidingWindowHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr
// if the data row has fewer items than width, the corresponding result row will be empty
if (out_shape.Size() == 0) {
MS_LOG(WARNING) << "The data row has fewer items than width, the result will be empty.";
if (input->type().value() == DataType::DE_STRING) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, std::vector<std::string>{}, TensorShape({0})));
} else {
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, TensorShape({0}), input->type()));
}
return Status::OK();
return Tensor::CreateEmpty(TensorShape({0}), input->type(), output);
}
axis = Tensor::HandleNeg(axis, input->shape().Size());

View File

@ -68,15 +68,12 @@ Status JiebaTokenizerOp::Compute(const TensorRow &input, TensorRow *output) {
offsets_limit.push_back(static_cast<uint32_t>(item.offset + item.word.length()));
}
}
token_tensor = std::make_shared<Tensor>(words, TensorShape({(dsize_t)words.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(words, &token_tensor));
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -36,9 +36,7 @@ Status LookupOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
word_ids.back() != Vocab::kNoTokenExists,
"Lookup Error: token: " + std::string(*itr) + " doesn't exist in vocab and no unknown token is specified.");
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, TensorImpl::kFlexible, input->shape(), type_,
reinterpret_cast<unsigned char *>(word_ids.data())));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(word_ids, input->shape(), output));
return Status::OK();
}
Status LookupOp::OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) {

View File

@ -67,7 +67,7 @@ Status NgramOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Te
}
}
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, res, TensorShape({static_cast<dsize_t>(res.size())})));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(res, TensorShape({static_cast<dsize_t>(res.size())}), output));
return Status::OK();
}

View File

@ -68,8 +68,7 @@ Status NormalizeUTF8Op::Compute(const std::shared_ptr<Tensor> &input, std::share
normalize->normalizeUTF8(0, icu::StringPiece((*iter).data(), (*iter).size()), sink, nullptr, error);
CHECK_FAIL_RETURN_UNEXPECTED(error.isSuccess(), "normalizeUTF8 failed.");
}
*output = std::make_shared<Tensor>(std::move(strs), input->shape());
return Status::OK();
return Tensor::CreateFromVector(strs, input->shape(), output);
}
} // namespace dataset
} // namespace mindspore

View File

@ -50,8 +50,7 @@ Status RegexReplaceOp::Compute(const std::shared_ptr<Tensor> &input, std::shared
for (auto iter = input->begin<std::string_view>(); iter != input->end<std::string_view>(); iter++) {
RETURN_IF_NOT_OK(RegexReplace(&matcher, *iter, &strs[i]));
}
*output = std::make_shared<Tensor>(std::move(strs), input->shape());
return Status::OK();
return Tensor::CreateFromVector(strs, input->shape(), output);
}
} // namespace dataset
} // namespace mindspore

View File

@ -120,15 +120,11 @@ Status RegexTokenizerOp::Compute(const TensorRow &input, TensorRow *output) {
std::shared_ptr<Tensor> token_tensor, offsets_start_tensor, offsets_limit_tensor;
RETURN_IF_NOT_OK(input[0]->GetItemAt(&text, {}));
RETURN_IF_NOT_OK(GetRegexTokens(std::string(text.data(), text.size()), &tokens, &offsets_start, &offsets_limit));
token_tensor = std::make_shared<Tensor>(std::move(tokens), TensorShape({(dsize_t)tokens.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(std::move(tokens), &token_tensor));
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -64,14 +64,14 @@ Status SentencePieceTokenizerOp::Compute(const std::shared_ptr<Tensor> &input, s
if (!status.ok()) {
RETURN_STATUS_UNEXPECTED("sentence piece tokenizer error");
}
*output = std::make_unique<Tensor>(pieces, TensorShape({(dsize_t)pieces.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(pieces, output));
} else {
std::vector<int> ids;
auto status = processor_.Encode(sentence, &ids);
if (!status.ok()) {
RETURN_STATUS_UNEXPECTED("sentence piece tokenizer error");
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, ids, TensorShape({(dsize_t)ids.size()})));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(ids, output));
}
return Status::OK();
}

View File

@ -114,7 +114,7 @@ Status ToNumberOp::ToSignedIntegral(const std::shared_ptr<Tensor> &input, std::s
casted.push_back(casted_result);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, casted, input->shape()));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(casted, input->shape(), output));
return Status::OK();
}
@ -157,7 +157,7 @@ Status ToNumberOp::ToUnsignedIntegral(const std::shared_ptr<Tensor> &input, std:
casted.push_back(casted_result);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, casted, input->shape()));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(casted, input->shape(), output));
return Status::OK();
}
@ -165,7 +165,7 @@ Status ToNumberOp::ToFloat16(const std::shared_ptr<Tensor> &input, std::shared_p
// special case, float16 does not exist in c++, no native support for
// casting, so cast to float first then use this method, which use Eigen.
std::shared_ptr<Tensor> temp;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&temp, TensorImpl::kFlexible, input->shape(), DataType("float32")));
RETURN_IF_NOT_OK(Tensor::CreateEmpty(input->shape(), DataType("float32"), &temp));
RETURN_IF_NOT_OK(ToFloat(input, &temp));
RETURN_IF_NOT_OK(mindspore::dataset::ToFloat16(temp, output));
return Status::OK();
@ -200,7 +200,7 @@ Status ToNumberOp::ToFloat(const std::shared_ptr<Tensor> &input, std::shared_ptr
casted.push_back(casted_result);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, casted, input->shape()));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(casted, input->shape(), output));
return Status::OK();
}
@ -233,7 +233,7 @@ Status ToNumberOp::ToDouble(const std::shared_ptr<Tensor> &input, std::shared_pt
casted.push_back(casted_result);
}
RETURN_IF_NOT_OK(Tensor::CreateTensor(output, casted, input->shape()));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(casted, input->shape(), output));
return Status::OK();
}

View File

@ -55,15 +55,13 @@ Status UnicodeCharTokenizerOp::Compute(const TensorRow &input, TensorRow *output
offsets_start.push_back(0);
offsets_limit.push_back(0);
}
token_tensor = std::make_shared<Tensor>(splits, TensorShape({(dsize_t)splits.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(splits, &token_tensor));
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -96,15 +96,12 @@ Status UnicodeScriptTokenizerOp::Compute(const TensorRow &input, TensorRow *outp
offsets_start.push_back(0);
offsets_limit.push_back(0);
}
token_tensor = std::make_shared<Tensor>(splits, TensorShape({(dsize_t)splits.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(splits, &token_tensor));
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -79,15 +79,12 @@ Status WhitespaceTokenizerOp::Compute(const TensorRow &input, TensorRow *output)
offsets_start.push_back(0);
offsets_limit.push_back(0);
}
token_tensor = std::make_shared<Tensor>(splits, TensorShape({(dsize_t)splits.size()}));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(splits, &token_tensor));
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -138,15 +138,12 @@ Status WordpieceTokenizerOp::Compute(const TensorRow &input, TensorRow *output)
offsets_start.push_back(0);
offsets_limit.push_back(0);
}
token_tensor = std::make_shared<Tensor>(out_tokens, TensorShape({(dsize_t)out_tokens.size()}));
Tensor::CreateFromVector(out_tokens, &token_tensor);
output->push_back(token_tensor);
if (with_offsets_) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_start_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_start.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_start[0])));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&offsets_limit_tensor, TensorImpl::kFlexible,
TensorShape({(dsize_t)offsets_limit.size()}), DataType(DataType::DE_UINT32),
reinterpret_cast<unsigned char *>(&offsets_limit[0])));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_start, &offsets_start_tensor));
RETURN_IF_NOT_OK(Tensor::CreateFromVector(offsets_limit, &offsets_limit_tensor));
output->push_back(offsets_start_tensor);
output->push_back(offsets_limit_tensor);
}

View File

@ -90,8 +90,8 @@ TEST_F(MindDataTestBatchOp, TestSimpleBatch) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
std::shared_ptr<de::Tensor> t;
rc = de::Tensor::CreateTensor(&t, TensorImpl::kFlexible, de::TensorShape({12, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({12, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t);
EXPECT_TRUE(rc.IsOk());
// verify the actual data in Tensor is correct
EXPECT_EQ(*t == *tensor_map["col_sint64"], true);
@ -119,14 +119,14 @@ TEST_F(MindDataTestBatchOp, TestRepeatBatchDropTrue) {
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2, t3;
rc = de::Tensor::CreateTensor(&t1, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t1);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7));
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7), &t2);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t3, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 2));
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 2), &t3);
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
@ -164,17 +164,17 @@ TEST_F(MindDataTestBatchOp, TestRepeatBatchDropFalse) {
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2, t3, t4;
rc = de::Tensor::CreateTensor(&t1, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t1);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7));
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7), &t2);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t3, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 2));
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 2), &t3);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t4, TensorImpl::kFlexible, de::TensorShape({3, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 9));
rc = de::Tensor::CreateFromMemory(de::TensorShape({3, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 9), &t4);
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
@ -216,11 +216,11 @@ TEST_F(MindDataTestBatchOp, TestBatchDropFalseRepeat) {
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2;
rc = de::Tensor::CreateTensor(&t1, TensorImpl::kFlexible, de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({7, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t1);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2, TensorImpl::kFlexible, de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7));
rc = de::Tensor::CreateFromMemory(de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 7), &t2);
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
@ -262,11 +262,11 @@ TEST_F(MindDataTestBatchOp, TestBatchDropTrueRepeat) {
-9223372036854775807 - 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9223372036854775807};
de::DatasetIterator di(tree);
std::shared_ptr<de::Tensor> t1, t2;
rc = de::Tensor::CreateTensor(&t1, TensorImpl::kFlexible, de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t1);
EXPECT_TRUE(rc.IsOk());
rc = de::Tensor::CreateTensor(&t2, TensorImpl::kFlexible, de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 5));
rc = de::Tensor::CreateFromMemory(de::TensorShape({5, 1}), de::DataType(DataType::DE_INT64),
(unsigned char *)(payload + 5), &t2);
EXPECT_TRUE(rc.IsOk());
TensorMap tensor_map;
@ -300,7 +300,7 @@ TEST_F(MindDataTestBatchOp, TestSimpleBatchPadding) {
std::shared_ptr<BatchOp> op;
PadInfo m;
std::shared_ptr<Tensor> pad_value;
Tensor::CreateTensor(&pad_value, TensorImpl::kFlexible, TensorShape::CreateScalar(), DataType(DataType::DE_FLOAT32));
Tensor::CreateEmpty(TensorShape::CreateScalar(), DataType(DataType::DE_FLOAT32), &pad_value);
pad_value->SetItemAt<float>({}, -1);
m.insert({"col_1d", std::make_pair(TensorShape({4}), pad_value)});
de::BatchOp::Builder(12).SetDrop(false).SetPaddingMap(m, true).Build(&op);
@ -359,8 +359,8 @@ TEST_F(MindDataTestBatchOp, TestSimpleBatchPadding) {
-1,
-1};
std::shared_ptr<de::Tensor> t;
rc = de::Tensor::CreateTensor(&t, TensorImpl::kFlexible, de::TensorShape({12, 4}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload);
rc = de::Tensor::CreateFromMemory(de::TensorShape({12, 4}), de::DataType(DataType::DE_INT64),
(unsigned char *)payload, &t);
de::DatasetIterator di(tree);
TensorMap tensor_map;
rc = di.GetNextAsMap(&tensor_map);

View File

@ -75,7 +75,8 @@ TEST_F(MindDataTestCacheOp, TestCacheServer) {
EXPECT_TRUE(rc.IsOk());
// Create a tensor, take a snapshot and restore it back, and compare.
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 3}), DataType(DataType::DE_UINT64), &t);
t->SetItemAt<uint64_t>({0, 0}, 1);
t->SetItemAt<uint64_t>({0, 1}, 2);
t->SetItemAt<uint64_t>({0, 2}, 3);
@ -129,7 +130,8 @@ TEST_F(MindDataTestCacheOp, TestConcurrencyRequest) {
rc = myClient.CreateCache(1, true);
EXPECT_TRUE(rc.IsOk());
std::cout << myClient << std::endl;
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 3}), DataType(DataType::DE_UINT64), &t);
t->SetItemAt<uint64_t>({0, 0}, 1);
t->SetItemAt<uint64_t>({0, 1}, 2);
t->SetItemAt<uint64_t>({0, 2}, 3);
@ -403,11 +405,7 @@ TEST_F(MindDataTestCacheOp, TestImageFolderCacheMerge) {
// replace it with the required tree structures for cache lookup op and cache merge op.
std::shared_ptr<CacheOp> myCacheOp;
rc = CacheOp::Builder()
.SetNumWorkers(4)
.SetClient(myClient)
.SetRowsPerBuffer(3)
.Build(&myCacheOp);
rc = CacheOp::Builder().SetNumWorkers(4).SetClient(myClient).SetRowsPerBuffer(3).Build(&myCacheOp);
std::shared_ptr<ImageFolderOp> so;
ImageFolderOp::Builder builder;

View File

@ -36,7 +36,7 @@ TEST_F(MindDataTestChannelSwap, TestOp) {
int size_buffer = s[0] * s[1] * s[2];
std::unique_ptr<uchar[]> output_buffer(new uchar[size_buffer]);
std::shared_ptr<Tensor> output_tensor(new Tensor(s, DataType(DataType::DE_UINT8)));
std::shared_ptr<Tensor> output_tensor;
// Decoding
std::unique_ptr<HwcToChwOp> op(new HwcToChwOp());

View File

@ -163,8 +163,11 @@ void BBoxOpCommon::CompareActualAndExpected(const std::string &op_name) {
// after comparison is done remove temporary file
EXPECT_TRUE(remove(actual_path.c_str()) == 0);
// compare using ==operator by Tensor
std::shared_ptr<CVTensor> expect_img_t, actual_img_t;
CVTensor::CreateFromMat(expect_img, &expect_img_t);
CVTensor::CreateFromMat(actual_img, &actual_img_t);
if (actual_img.data) {
EXPECT_EQ(CVTensor(expect_img) == CVTensor(actual_img), true);
EXPECT_EQ(*expect_img_t == *actual_img_t, true);
} else {
MS_LOG(ERROR) << "Not pass verification! Image data is null.";
EXPECT_EQ(0, 1);
@ -223,7 +226,7 @@ bool BBoxOpCommon::LoadAnnotationFile(const std::string &path, std::shared_ptr<T
object = object->NextSiblingElement("object"); // Read next BBox if exists
}
std::shared_ptr<Tensor> ret_value;
Status s = Tensor::CreateTensor(&ret_value, return_value_list, TensorShape({bbox_count, bbox_val_count}));
Status s = Tensor::CreateFromVector(return_value_list, TensorShape({bbox_count, bbox_val_count}), &ret_value);
EXPECT_TRUE(s.IsOk());
(*target_BBox) = ret_value; // load bbox from file into return
return true;

View File

@ -52,9 +52,11 @@ std::string CVOpCommon::GetFilename() {
void CVOpCommon::GetInputImage(std::string filename) {
try {
Tensor::CreateTensor(&raw_input_tensor_, filename);
Tensor::CreateFromFile(filename, &raw_input_tensor_);
raw_cv_image_ = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
input_tensor_ = std::dynamic_pointer_cast<Tensor>(std::make_shared<CVTensor>(raw_cv_image_));
std::shared_ptr<CVTensor> input_cv_tensor;
CVTensor::CreateFromMat(raw_cv_image_, &input_cv_tensor);
input_tensor_ = std::dynamic_pointer_cast<Tensor>(input_cv_tensor);
SwapRedAndBlue(input_tensor_, &input_tensor_);
if (raw_cv_image_.data) {
MS_LOG(INFO) << "Reading was successful. Height:" << raw_cv_image_.rows << " Width: " << raw_cv_image_.cols

View File

@ -29,14 +29,14 @@ class MindDataTestConcatenateOp : public UT::Common {
TEST_F(MindDataTestConcatenateOp, TestOp) {
MS_LOG(INFO) << "Doing MindDataTestConcatenate-TestOp.";
uint64_t labels[3] = {1, 1, 2};
std::vector<uint64_t> labels = {1, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
uint64_t append_labels[3] = {4, 4, 4};
std::shared_ptr<Tensor> append =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(append_labels));
std::vector<uint64_t> append_labels = {4, 4, 4};
std::shared_ptr<Tensor> append;
Tensor::CreateFromVector(append_labels, &append);
std::shared_ptr<Tensor> output;
std::unique_ptr<ConcatenateOp> op(new ConcatenateOp(0, nullptr, append));
@ -44,10 +44,11 @@ TEST_F(MindDataTestConcatenateOp, TestOp) {
in.push_back(input);
TensorRow out_row;
Status s = op->Compute(in, &out_row);
uint64_t out[6] = {1, 1, 2, 4, 4, 4};
std::vector<uint64_t> out = {1, 1, 2, 4, 4, 4};
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(out, &expected);
std::shared_ptr<Tensor> expected =
std::make_shared<Tensor>(TensorShape{6}, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(out));
output = out_row[0];
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected->shape());

View File

@ -32,9 +32,9 @@ class MindDataTestDuplicateOp : public UT::Common {
TEST_F(MindDataTestDuplicateOp, Basics) {
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, std::vector<uint32_t>({1, 2, 3, 4, 5, 6}));
Tensor::CreateFromVector(std::vector<uint32_t>({1, 2, 3, 4, 5, 6}), &t);
std::shared_ptr<Tensor> v;
Tensor::CreateTensor(&v, std::vector<uint32_t>({3}), TensorShape::CreateScalar());
Tensor::CreateFromVector(std::vector<uint32_t>({3}), TensorShape::CreateScalar(), &v);
std::shared_ptr<DuplicateOp> op = std::make_shared<DuplicateOp>();
TensorRow in;
in.push_back(t);

View File

@ -29,23 +29,20 @@ class MindDataTestFillOp : public UT::Common {
TEST_F(MindDataTestFillOp, TestOp) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-TestOp.";
uint64_t labels[3] = {1, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
std::vector<uint64_t> labels = {1, 1, 2};
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
TensorShape fill_shape({});
std::shared_ptr<Tensor> fill_tensor = std::make_shared<Tensor>(fill_shape, DataType(DataType::DE_UINT64));
fill_tensor->SetItemAt<uint64_t>({}, 4);
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateScalar<uint64_t>(4, &fill_tensor);
std::shared_ptr<Tensor> output;
std::unique_ptr<FillOp> op(new FillOp(fill_tensor));
Status s = op->Compute(input, &output);
uint64_t out[3] = {4, 4, 4};
std::shared_ptr<Tensor> expected =
std::make_shared<Tensor>(TensorShape{3}, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(out));
std::vector<uint64_t> out = {4, 4, 4};
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(out, &expected);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected->shape());
@ -59,23 +56,20 @@ TEST_F(MindDataTestFillOp, TestOp) {
TEST_F(MindDataTestFillOp, TestCasting) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-TestCasting.";
uint64_t labels[3] = {0, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
std::vector<uint64_t> labels = {0, 1, 2};
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
TensorShape fill_shape({});
std::shared_ptr<Tensor> fill_tensor = std::make_shared<Tensor>(fill_shape, DataType(DataType::DE_FLOAT32));
fill_tensor->SetItemAt<float>({}, 2.0);
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateScalar<float>(2.0, &fill_tensor);
std::shared_ptr<Tensor> output;
std::unique_ptr<FillOp> op(new FillOp(fill_tensor));
Status s = op->Compute(input, &output);
uint64_t out[3] = {2, 2, 2};
std::shared_ptr<Tensor> expected =
std::make_shared<Tensor>(TensorShape{3}, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(out));
std::vector<uint64_t> out = {2, 2, 2};
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(out, &expected);
ASSERT_TRUE(output->shape() == expected->shape());
ASSERT_TRUE(output->type() == expected->type());
@ -90,15 +84,15 @@ TEST_F(MindDataTestFillOp, TestCasting) {
TEST_F(MindDataTestFillOp, ScalarFill) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-ScalarFill.";
uint64_t labels[3] = {0, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
std::vector<uint64_t> labels = {0, 1, 2};
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
TensorShape fill_shape({2});
uint64_t fill_labels[3] = {0, 1};
std::shared_ptr<Tensor> fill_tensor =
std::make_shared<Tensor>(fill_shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(fill_labels));
std::vector<uint64_t> fill_labels = {0, 1};
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateFromVector(fill_labels, &fill_tensor);
std::shared_ptr<Tensor> output;
std::unique_ptr<FillOp> op(new FillOp(fill_tensor));
Status s = op->Compute(input, &output);
@ -112,12 +106,11 @@ TEST_F(MindDataTestFillOp, ScalarFill) {
TEST_F(MindDataTestFillOp, StringFill) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-StringFill.";
std::vector<std::string> strings = {"xyzzy", "plugh", "abracadabra"};
TensorShape shape({3});
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(strings, shape);
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(strings, &input);
TensorShape fill_shape({});
std::string fill_string = "hello";
std::shared_ptr<Tensor> fill_tensor = std::make_shared<Tensor>(fill_string);
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateScalar<std::string>("hello", &fill_tensor);
std::shared_ptr<Tensor> output;
@ -125,8 +118,8 @@ TEST_F(MindDataTestFillOp, StringFill) {
Status s = op->Compute(input, &output);
std::vector<std::string> expected_strings = {"hello", "hello", "hello"};
TensorShape expected_shape({3});
std::shared_ptr<Tensor> expected = std::make_shared<Tensor>(expected_strings, expected_shape);
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(expected_strings, &expected);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected->shape());
@ -142,12 +135,11 @@ TEST_F(MindDataTestFillOp, StringFill) {
TEST_F(MindDataTestFillOp, NumericToString) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-NumericToString.";
std::vector<std::string> strings = {"xyzzy", "plugh", "abracadabra"};
TensorShape shape({3});
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(strings, shape);
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(strings, &input);
TensorShape fill_shape({});
std::shared_ptr<Tensor> fill_tensor = std::make_shared<Tensor>(fill_shape, DataType(DataType::DE_FLOAT32));
fill_tensor->SetItemAt<float>({}, 2.0);
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateScalar<float>(2.0, &fill_tensor);
std::shared_ptr<Tensor> output;
@ -162,14 +154,12 @@ TEST_F(MindDataTestFillOp, NumericToString) {
TEST_F(MindDataTestFillOp, StringToNumeric) {
MS_LOG(INFO) << "Doing MindDataTestFillOp-StringToNumeric.";
uint64_t labels[3] = {0, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input =
std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64), reinterpret_cast<unsigned char *>(labels));
std::vector<uint64_t> labels = {0, 1, 2};
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
TensorShape fill_shape({});
std::string fill_string = "hello";
std::shared_ptr<Tensor> fill_tensor = std::make_shared<Tensor>(fill_string);
std::shared_ptr<Tensor> fill_tensor;
Tensor::CreateScalar<std::string>("hello", &fill_tensor);
std::shared_ptr<Tensor> output;

View File

@ -68,8 +68,7 @@ std::shared_ptr<ImageFolderOp> ImageFolder(int64_t num_works, int64_t rows, int6
Status Create1DTensor(std::shared_ptr<Tensor> *sample_ids, int64_t num_elements, unsigned char *data = nullptr,
DataType::Type data_type = DataType::DE_UINT32) {
TensorShape shape(std::vector<int64_t>(1, num_elements));
RETURN_IF_NOT_OK(Tensor::CreateTensor(sample_ids, TensorImpl::kFlexible, shape, DataType(data_type), data));
(*sample_ids)->AllocateBuffer((*sample_ids)->SizeInBytes()); // allocate memory in case user forgets!
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(shape, DataType(data_type), data, sample_ids));
return Status::OK();
}

View File

@ -42,7 +42,8 @@ TEST_F(MindDataTestJiebaTokenizerOp, TestJieba_opFuntions) {
TensorRow input, output;
std::unique_ptr<JiebaTokenizerOp> op(new JiebaTokenizerOp(hmm_path, mp_path));
std::shared_ptr<Tensor> input_tensor = std::make_shared<Tensor>("今天天气太好了我们一起去外面玩吧");
std::shared_ptr<Tensor> input_tensor;
Tensor::CreateScalar<std::string>("今天天气太好了我们一起去外面玩吧", &input_tensor);
input.push_back(input_tensor);
Status s = op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());
@ -66,7 +67,8 @@ TEST_F(MindDataTestJiebaTokenizerOp, TestJieba_opAdd) {
std::unique_ptr<JiebaTokenizerOp> op(new JiebaTokenizerOp(hmm_path, mp_path));
op->AddWord("男默女泪");
std::shared_ptr<Tensor> input_tensor = std::make_shared<Tensor>("男默女泪");
std::shared_ptr<Tensor> input_tensor;
Tensor::CreateScalar<std::string>("男默女泪", &input_tensor);
input.push_back(input_tensor);
Status s = op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());
@ -84,7 +86,8 @@ TEST_F(MindDataTestJiebaTokenizerOp, TestJieba_opEmpty) {
std::unique_ptr<JiebaTokenizerOp> op(new JiebaTokenizerOp(hmm_path, mp_path));
op->AddWord("男默女泪");
std::shared_ptr<Tensor> input_tensor = std::make_shared<Tensor>("");
std::shared_ptr<Tensor> input_tensor;
Tensor::CreateScalar<std::string>("", &input_tensor);
input.push_back(input_tensor);
Status s = op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());

View File

@ -71,9 +71,9 @@ TEST_F(MindDataTestManifest, TestSequentialManifestWithRepeat) {
di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
uint64_t i = 0;
uint32_t label = 0;
int32_t label = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<uint32_t>(&label, {});
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
EXPECT_TRUE(res[i] == label);
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
i++;
@ -101,9 +101,9 @@ TEST_F(MindDataTestManifest, TestSubsetRandomSamplerManifest) {
rc = di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
uint64_t i = 0;
uint32_t label = 0;
int32_t label = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<uint32_t>(&label, {});
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
i++;
di.GetNextAsMap(&tensor_map);
EXPECT_EQ(label, 1);
@ -131,9 +131,9 @@ TEST_F(MindDataTestManifest, MindDataTestManifestClassIndex) {
di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
uint64_t i = 0;
uint32_t label = 0;
int32_t label = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<uint32_t>(&label, {});
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
EXPECT_TRUE(label == res[i]);
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
i++;
@ -160,9 +160,9 @@ TEST_F(MindDataTestManifest, MindDataTestManifestNumSamples) {
di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
uint64_t i = 0;
uint32_t label = 0;
int32_t label = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<uint32_t>(&label, {});
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
EXPECT_TRUE(0 == label);
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
i++;
@ -189,9 +189,9 @@ TEST_F(MindDataTestManifest, MindDataTestManifestEval) {
di.GetNextAsMap(&tensor_map);
EXPECT_TRUE(rc.IsOk());
uint64_t i = 0;
uint32_t label = 0;
int32_t label = 0;
while (tensor_map.size() != 0) {
tensor_map["label"]->GetItemAt<uint32_t>(&label, {});
tensor_map["label"]->GetItemAt<int32_t>(&label, {});
EXPECT_TRUE(0 == label);
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n";
i++;

View File

@ -38,9 +38,9 @@ class MindDataTestMaskOp : public UT::Common {
TEST_F(MindDataTestMaskOp, Basics) {
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, std::vector<uint32_t>({1, 2, 3, 4, 5, 6}));
Tensor::CreateFromVector(std::vector<uint32_t>({1, 2, 3, 4, 5, 6}), &t);
std::shared_ptr<Tensor> v;
Tensor::CreateTensor(&v, std::vector<uint32_t>({3}), TensorShape::CreateScalar());
Tensor::CreateFromVector(std::vector<uint32_t>({3}), TensorShape::CreateScalar(), &v);
std::shared_ptr<MaskOp> op = std::make_shared<MaskOp>(RelationalOp::kEqual, v, DataType(DataType::DE_UINT16));
std::shared_ptr<Tensor> out;
ASSERT_TRUE(op->Compute(t, &out).IsOk());

View File

@ -29,19 +29,17 @@ class MindDataTestOneHotOp : public UT::Common {
TEST_F(MindDataTestOneHotOp, TestOp) {
MS_LOG(INFO) << "Doing MindDataTestOneHotOp.";
uint64_t labels[3] = {0, 1, 2};
TensorShape shape({3});
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(shape, DataType(DataType::DE_UINT64),
reinterpret_cast <unsigned char *>(labels));
std::vector<uint64_t> labels = {0, 1, 2};
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(labels, &input);
std::shared_ptr<Tensor> output;
std::unique_ptr<OneHotOp> op(new OneHotOp(5));
Status s = op->Compute(input, &output);
uint64_t out[15] = {1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0};
std::shared_ptr<Tensor> expected = std::make_shared<Tensor>(TensorShape{3, 5}, DataType(DataType::DE_UINT64),
reinterpret_cast <unsigned char *>(out));
std::vector<uint64_t> out = {1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0};
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(out, TensorShape{3, 5}, &expected);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected->shape());
ASSERT_TRUE(output->type() == expected->type());

View File

@ -35,44 +35,40 @@ TEST_F(MindDataTestPadEndOp, TestOp) {
TensorShape pad_data_shape({1});
// prepare input tensor
float_t orig1[4] = {1, 1, 1, 1};
std::vector<float> orig1 = {1, 1, 1, 1};
TensorShape input_shape1({2, 2});
std::vector<TensorShape> input_shape1_vector = {input_shape1};
std::shared_ptr<Tensor> input1 =
std::make_shared<Tensor>(input_shape1, DataType(DataType::DE_FLOAT32), reinterpret_cast<unsigned char *>(orig1));
std::shared_ptr<Tensor> input1;
Tensor::CreateFromVector(orig1, input_shape1, &input1);
// pad_shape
TensorShape pad_shape1[3] = {TensorShape({3, 3}), TensorShape({2, 4}), TensorShape({4, 2})};
// value to pad
float_t pad_data1[3][1] = {0, 3.5, 3.5};
std::vector<std::vector<float>> pad_data1 = {{0}, {3.5}, {3.5}};
std::shared_ptr<Tensor> expected1[3];
// expected tensor output for testunit 1
float_t out1[9] = {1, 1, 0, 1, 1, 0, 0, 0, 0};
expected1[0] =
std::make_shared<Tensor>(pad_shape1[0], DataType(DataType::DE_FLOAT32), reinterpret_cast<unsigned char *>(out1));
std::vector<float> out1 = {1, 1, 0, 1, 1, 0, 0, 0, 0};
Tensor::CreateFromVector(out1, pad_shape1[0], &(expected1[0]));
// expected tensor output for testunit 2
float_t out2[8] = {1, 1, 3.5, 3.5, 1, 1, 3.5, 3.5};
expected1[1] =
std::make_shared<Tensor>(pad_shape1[1], DataType(DataType::DE_FLOAT32), reinterpret_cast<unsigned char *>(out2));
std::vector<float> out2 = {1, 1, 3.5, 3.5, 1, 1, 3.5, 3.5};
Tensor::CreateFromVector(out2, pad_shape1[1], &(expected1[1]));
// expected tensor output for testunit 3
float_t out3[8] = {1, 1, 1, 1, 3.5, 3.5, 3.5, 3.5};
expected1[2] =
std::make_shared<Tensor>(pad_shape1[2], DataType(DataType::DE_FLOAT32), reinterpret_cast<unsigned char *>(out3));
std::vector<float> out3 = {1, 1, 1, 1, 3.5, 3.5, 3.5, 3.5};
Tensor::CreateFromVector(out3, pad_shape1[2], &(expected1[2]));
// run the PadEndOp
for (auto i = 0; i < 3; i++) {
std::shared_ptr<Tensor> output;
std::vector<TensorShape> output_shape = {TensorShape({})};
std::shared_ptr<Tensor> pad_value1 = std::make_shared<Tensor>(pad_data_shape, DataType(DataType::DE_FLOAT32),
reinterpret_cast<unsigned char *>(pad_data1[i]));
std::shared_ptr<Tensor> pad_value1;
Tensor::CreateFromVector(pad_data1[i], pad_data_shape, &pad_value1);
std::unique_ptr<PadEndOp> op(new PadEndOp(pad_shape1[i], pad_value1));
Status s = op->Compute(input1, &output);
@ -96,7 +92,7 @@ TEST_F(MindDataTestPadEndOp, TestOp) {
TensorShape input_shape2({2});
std::vector<TensorShape> input_shape2_vector = {input_shape2};
std::shared_ptr<Tensor> input2;
Tensor::CreateTensor(&input2, orig2, input_shape2);
Tensor::CreateFromVector(orig2, input_shape2, &input2);
// pad_shape
TensorShape pad_shape2[3] = {TensorShape({5}), TensorShape({2}), TensorShape({10})};
@ -112,7 +108,7 @@ TEST_F(MindDataTestPadEndOp, TestOp) {
for (auto i = 0; i < 3; i++) {
// pad value
Tensor::CreateTensor(&pad_value2[i], pad_data2[i], pad_data_shape);
Tensor::CreateFromVector(pad_data2[i], pad_data_shape, &pad_value2[i]);
std::shared_ptr<Tensor> output;
std::vector<TensorShape> output_shape = {TensorShape({})};
@ -121,7 +117,7 @@ TEST_F(MindDataTestPadEndOp, TestOp) {
Status s = op->Compute(input2, &output);
Tensor::CreateTensor(&expected2[i], outstring[i], pad_shape2[i]);
Tensor::CreateFromVector(outstring[i], pad_shape2[i], &expected2[i]);
EXPECT_TRUE(s.IsOk());
ASSERT_TRUE(output->shape() == expected2[i]->shape());

View File

@ -93,7 +93,6 @@ TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceFromDatasetFuntions) {
rc = di.FetchNextTensorRow(&tensor_list);
}
ASSERT_TRUE(rc.IsOk());
}
TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceFromFileFuntions) {
@ -166,9 +165,10 @@ TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceTokenizerFuntions) {
rc = di.FetchNextTensorRow(&tensor_list);
}
std::shared_ptr<Tensor> output_tensor;
std::unique_ptr<SentencePieceTokenizerOp> op(new SentencePieceTokenizerOp(spm,
SPieceTokenizerLoadType::kModel, SPieceTokenizerOutType::kString));
std::shared_ptr<Tensor> input_tensor = std::make_shared<Tensor>("I saw a girl with a telescope.");
std::unique_ptr<SentencePieceTokenizerOp> op(
new SentencePieceTokenizerOp(spm, SPieceTokenizerLoadType::kModel, SPieceTokenizerOutType::kString));
std::shared_ptr<Tensor> input_tensor;
Tensor::CreateScalar<std::string>("I saw a girl with a telescope.", &input_tensor);
Status s = op->Compute(input_tensor, &output_tensor);
std::vector<std::string> expect;

View File

@ -31,7 +31,8 @@ TEST_F(MindDataTestSlidingWindowOp, Compute) {
MS_LOG(INFO) << "Doing MindDataTestSlidingWindowOp->Compute.";
std::vector<std::string> strings = {"one", "two", "three", "four", "five", "six", "seven", "eight"};
TensorShape shape({static_cast<dsize_t>(strings.size())});
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(strings, shape);
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(strings, shape, &input);
std::shared_ptr<Tensor> output;
std::unique_ptr<SlidingWindowOp> op(new SlidingWindowOp(3, 0));
@ -39,7 +40,8 @@ TEST_F(MindDataTestSlidingWindowOp, Compute) {
std::vector<std::string> out = {"one", "two", "three", "two", "three", "four", "three", "four", "five",
"four", "five", "six", "five", "six", "seven", "six", "seven", "eight"};
std::shared_ptr<Tensor> expected = std::make_shared<Tensor>(out, TensorShape({6, 3}));
std::shared_ptr<Tensor> expected;
Tensor::CreateFromVector(out, TensorShape({6, 3}), &expected);
ASSERT_TRUE(output->shape() == expected->shape());
ASSERT_TRUE(output->type() == expected->type());
@ -54,7 +56,8 @@ TEST_F(MindDataTestSlidingWindowOp, OutputShape) {
MS_LOG(INFO) << "Doing MindDataTestSlidingWindowOp->OutputShape.";
std::vector<std::string> strings = {"one", "two", "three", "four", "five", "six", "seven", "eight"};
TensorShape shape({static_cast<dsize_t>(strings.size())});
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(strings, shape);
std::shared_ptr<Tensor> input;
Tensor::CreateFromVector(strings, shape, &input);
std::vector<TensorShape> input_shape = {input->shape()};
std::vector<TensorShape> output_shape = {TensorShape({})};

View File

@ -30,8 +30,7 @@ using namespace mindspore::dataset;
Status CreateINT64Tensor(std::shared_ptr<Tensor> *sample_ids, int64_t num_elements, unsigned char *data = nullptr) {
TensorShape shape(std::vector<int64_t>(1, num_elements));
RETURN_IF_NOT_OK(Tensor::CreateTensor(sample_ids, TensorImpl::kFlexible, shape, DataType(DataType::DE_INT64), data));
(*sample_ids)->AllocateBuffer((*sample_ids)->SizeInBytes()); // allocate memory in case user forgets!
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(shape, DataType(DataType::DE_INT64), data, sample_ids));
return Status::OK();
}
@ -54,8 +53,7 @@ TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) {
{0, 17, 4, 10, 14, 8, 15}, {13, 9, 16, 3, 2, 19, 12}, {1, 11, 6, 18, 7, 5, 0}};
for (int i = 0; i < 6; i++) {
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, TensorImpl::kFlexible, TensorShape({7}),
DataType(DataType::DE_INT64), (unsigned char *)(res[i]));
Tensor::CreateFromMemory(TensorShape({7}), DataType(DataType::DE_INT64), (unsigned char *)(res[i]), &t);
row.push_back(t);
}
MockStorageOp mock(20);

View File

@ -35,13 +35,15 @@ class MindDataTestStringTensorDE : public UT::Common {
};
TEST_F(MindDataTestStringTensorDE, Basics) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>("Hi");
std::shared_ptr<Tensor> t;
Tensor::CreateScalar<std::string>("Hi", &t);
ASSERT_TRUE(t->shape() == TensorShape({}));
std::string_view s = "";
t->GetItemAt(&s, {});
ASSERT_TRUE(s == "Hi");
std::shared_ptr<Tensor> t2 = std::make_shared<Tensor>(std::vector<std::string>{"Hi", "Bye"});
std::shared_ptr<Tensor> t2;
Tensor::CreateFromVector(std::vector<std::string>{"Hi", "Bye"}, &t2);
ASSERT_TRUE(t2->shape() == TensorShape({2}));
t2->GetItemAt(&s, {0});
ASSERT_TRUE(s == "Hi");
@ -49,7 +51,9 @@ TEST_F(MindDataTestStringTensorDE, Basics) {
ASSERT_TRUE(s == "Bye");
std::vector<std::string> strings{"abc", "defg", "hi", "klmno", "123", "789"};
std::shared_ptr<Tensor> t3 = std::make_shared<Tensor>(strings, TensorShape({2, 3}));
std::shared_ptr<Tensor> t3;
Tensor::CreateFromVector(strings, TensorShape({2, 3}), &t3);
ASSERT_TRUE(t3->shape() == TensorShape({2, 3}));
uint32_t index = 0;
for (uint32_t i = 0; i < 2; i++) {
@ -62,8 +66,10 @@ TEST_F(MindDataTestStringTensorDE, Basics) {
}
TEST_F(MindDataTestStringTensorDE, Basics2) {
std::shared_ptr<Tensor> t =
std::make_shared<Tensor>(std::vector<std::string>{"abc", "defg", "hi", "klmno", "123", "789"}, TensorShape({2, 3}));
std::shared_ptr<Tensor> t;
Tensor::CreateFromVector(std::vector<std::string>{"abc", "defg", "hi", "klmno", "123", "789"}, TensorShape({2, 3}),
&t);
ASSERT_TRUE(t->SizeInBytes() == 6 * 5 + 20 + 4);
std::vector<uint32_t> offsets = {0, 4, 9, 12, 18, 22, 26};
uint32_t ctr = 0;
@ -86,7 +92,8 @@ TEST_F(MindDataTestStringTensorDE, Basics2) {
TEST_F(MindDataTestStringTensorDE, Empty) {
std::vector<std::string> strings{"abc", "defg", "", "", "123", ""};
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(strings, TensorShape({2, 3}));
std::shared_ptr<Tensor> t;
Tensor::CreateFromVector(strings, TensorShape({2, 3}), &t);
// abc_defg___123__
// 0123456789012345
ASSERT_TRUE(t->SizeInBytes() == 6 * 5 + 10 + 4);
@ -112,7 +119,9 @@ TEST_F(MindDataTestStringTensorDE, Empty) {
TEST_F(MindDataTestStringTensorDE, SetItem) {
std::vector<std::string> strings{"abc", "defg", "hi", "klmno", "123", "789"};
std::shared_ptr<Tensor> t3 = std::make_shared<Tensor>(strings, TensorShape({2, 3}));
std::shared_ptr<Tensor> t3;
Tensor::CreateFromVector(strings, TensorShape({2, 3}), &t3);
ASSERT_TRUE(t3->shape() == TensorShape({2, 3}));
t3->SetItemAt({0, 1}, std::string{"xyzz"});
@ -136,7 +145,8 @@ TEST_F(MindDataTestStringTensorDE, SetItem) {
TEST_F(MindDataTestStringTensorDE, Iterator) {
std::vector<std::string> strings{"abc", "defg", "hi", "klmno", "123", "789"};
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(strings, TensorShape({2, 3}));
std::shared_ptr<Tensor> t;
Tensor::CreateFromVector(strings, TensorShape({2, 3}), &t);
uint32_t index = 0;
auto itr = t->begin<std::string_view>();
for (; itr != t->end<std::string_view>(); itr++) {

View File

@ -35,8 +35,9 @@ class MindDataTestTensorDE : public UT::Common {
};
TEST_F(MindDataTestTensorDE, Basics) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
ASSERT_TRUE((t->AllocateBuffer(t->SizeInBytes())).IsOk());
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 3}), DataType(DataType::DE_UINT64), &t);
ASSERT_EQ(t->shape(), TensorShape({2, 3}));
ASSERT_EQ(t->type(), DataType::DE_UINT64);
ASSERT_EQ(t->SizeInBytes(), 2 * 3 * 8);
@ -67,28 +68,30 @@ TEST_F(MindDataTestTensorDE, Basics) {
ASSERT_EQ(t->ToString(), "Tensor (shape: <2,3>, Type: uint64)\n[[1,2,3],[4,5,6]]");
std::vector<uint64_t> x = {1, 2, 3, 4, 5, 6};
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, x, TensorShape({2, 3}));
Tensor::CreateFromVector(x, TensorShape({2, 3}), &t2);
ASSERT_EQ(*t == *t2, true);
ASSERT_EQ(*t != *t2, false);
}
TEST_F(MindDataTestTensorDE, Fill) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_FLOAT32));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_FLOAT32), &t);
t->Fill<float>(2.5);
std::vector<float> x = {2.5, 2.5, 2.5, 2.5};
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, x, TensorShape({2, 2}));
Tensor::CreateFromVector(x, TensorShape({2, 2}), &t2);
ASSERT_EQ(*t == *t2, true);
}
TEST_F(MindDataTestTensorDE, Reshape) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_UINT8), &t);
t->Fill<uint8_t>(254);
t->Reshape(TensorShape({4}));
std::vector<uint8_t> x = {254, 254, 254, 254};
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, x);
Tensor::CreateFromVector(x, &t2);
ASSERT_EQ(*t == *t2, true);
Status rc = t->Reshape(TensorShape({5}));
@ -102,7 +105,8 @@ TEST_F(MindDataTestTensorDE, Reshape) {
}
TEST_F(MindDataTestTensorDE, CopyTensor) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({}), DataType(DataType::DE_INT16));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({}), DataType(DataType::DE_INT16), &t);
t->SetItemAt<int16_t>({}, -66);
ASSERT_EQ(t->shape(), TensorShape({}));
ASSERT_EQ(t->type(), DataType::DE_INT16);
@ -125,30 +129,31 @@ TEST_F(MindDataTestTensorDE, CopyTensor) {
}
TEST_F(MindDataTestTensorDE, InsertTensor) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_FLOAT64));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 3}), DataType(DataType::DE_FLOAT64), &t);
std::vector<double> x = {1.1, 2.1, 3.1};
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, x);
Tensor::CreateFromVector(x, &t2);
std::vector<double> y = {1.2, 2.2, 3.2};
std::shared_ptr<Tensor> t3;
Tensor::CreateTensor(&t3, y);
Tensor::CreateFromVector(y, &t3);
ASSERT_TRUE(t->InsertTensor({0}, t2).OK());
ASSERT_TRUE(t->InsertTensor({1}, t3).OK());
std::vector<double> z = {1.1, 2.1, 3.1, 1.2, 2.2, 3.2};
std::shared_ptr<Tensor> t4;
Tensor::CreateTensor(&t4, z, TensorShape({2, 3}));
Tensor::CreateFromVector(z, TensorShape({2, 3}), &t4);
ASSERT_EQ(*t == *t4, true);
std::shared_ptr<Tensor> t5;
Tensor::CreateTensor<double>(&t5, 0);
Tensor::CreateScalar<double>(0, &t5);
ASSERT_TRUE(t->InsertTensor({1, 2}, t5).OK());
z[5] = 0;
std::shared_ptr<Tensor> t6;
Tensor::CreateTensor(&t6, z, TensorShape({2, 3}));
Tensor::CreateFromVector(z, TensorShape({2, 3}), &t6);
ASSERT_EQ(*t == *t6, true);
ASSERT_EQ(t->InsertTensor({2}, t5).get_code(), StatusCode::kUnexpectedError);
@ -161,7 +166,8 @@ TEST_F(MindDataTestTensorDE, InsertTensor) {
// Test the bug of Tensor::ToString will exec failed for Tensor which store bool values
TEST_F(MindDataTestTensorDE, BoolTensor) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2}), DataType(DataType::DE_BOOL));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2}), DataType(DataType::DE_BOOL), &t);
t->SetItemAt<bool>({0}, true);
t->SetItemAt<bool>({1}, true);
std::string out = t->ToString();
@ -169,7 +175,8 @@ TEST_F(MindDataTestTensorDE, BoolTensor) {
}
TEST_F(MindDataTestTensorDE, GetItemAt) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_UINT8), &t);
t->Fill<uint8_t>(254);
uint64_t o1;
t->GetItemAt<uint64_t>(&o1, {0, 0});
@ -183,7 +190,8 @@ TEST_F(MindDataTestTensorDE, GetItemAt) {
uint8_t o4;
t->GetItemAt<uint8_t>(&o4, {1, 1});
ASSERT_EQ(o4, 254);
std::shared_ptr<Tensor> t2 = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_INT8));
std::shared_ptr<Tensor> t2;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_INT8), &t2);
t2->Fill<int8_t>(-10);
int64_t o5;
t2->GetItemAt<int64_t>(&o5, {0, 0});
@ -197,7 +205,8 @@ TEST_F(MindDataTestTensorDE, GetItemAt) {
int8_t o8;
t2->GetItemAt<int8_t>(&o8, {1, 1});
ASSERT_EQ(o8, -10);
std::shared_ptr<Tensor> t3 = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_FLOAT32));
std::shared_ptr<Tensor> t3;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_FLOAT32), &t3);
t3->Fill<float>(1.1);
double o9;
t3->GetItemAt<double>(&o9, {0, 0});
@ -208,9 +217,11 @@ TEST_F(MindDataTestTensorDE, GetItemAt) {
}
TEST_F(MindDataTestTensorDE, OperatorAssign) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_UINT8), &t);
t->Fill<uint8_t>(1);
std::shared_ptr<Tensor> t2 = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> t2;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_UINT8), &t2);
*t2 = std::move(*t);
uint8_t o;
t2->GetItemAt(&o, {0, 0});
@ -224,18 +235,20 @@ TEST_F(MindDataTestTensorDE, OperatorAssign) {
}
TEST_F(MindDataTestTensorDE, Strides) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({4, 2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({4, 2, 2}), DataType(DataType::DE_UINT8), &t);
std::vector<dsize_t> x1 = t->Strides();
std::vector<dsize_t> x2 = {4, 2, 1};
ASSERT_EQ(x1, x2);
t = std::make_shared<Tensor>(TensorShape({4, 2, 2}), DataType(DataType::DE_UINT32));
Tensor::CreateEmpty(TensorShape({4, 2, 2}), DataType(DataType::DE_UINT32), &t);
x1 = t->Strides();
x2 = {16, 8, 4};
ASSERT_EQ(x1, x2);
}
void checkCvMat(TensorShape shape, DataType type) {
std::shared_ptr<CVTensor> t = std::make_shared<CVTensor>(shape, type);
std::shared_ptr<CVTensor> t;
CVTensor::CreateEmpty(shape, type, &t);
cv::Mat m = t->mat();
ASSERT_EQ(m.data, t->GetBuffer());
ASSERT_EQ(static_cast<uchar>(m.type()) & static_cast<uchar>(CV_MAT_DEPTH_MASK), type.AsCVType());
@ -289,8 +302,10 @@ TEST_F(MindDataTestTensorDE, CVTensorFromMat) {
m.at<uint8_t>(0, 1) = 20;
m.at<uint8_t>(1, 0) = 30;
m.at<uint8_t>(1, 1) = 40;
std::shared_ptr<CVTensor> cvt = std::make_shared<CVTensor>(m);
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 2}), DataType(DataType::DE_UINT8));
std::shared_ptr<CVTensor> cvt;
CVTensor::CreateFromMat(m, &cvt);
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({2, 2}), DataType(DataType::DE_UINT8), &t);
t->SetItemAt<uint8_t>({0, 0}, 10);
t->SetItemAt<uint8_t>({0, 1}, 20);
t->SetItemAt<uint8_t>({1, 0}, 30);
@ -302,8 +317,10 @@ TEST_F(MindDataTestTensorDE, CVTensorFromMat) {
m2.at<uint8_t>(1) = 20;
m2.at<uint8_t>(2) = 30;
m2.at<uint8_t>(3) = 40;
std::shared_ptr<CVTensor> cvt2 = std::make_shared<CVTensor>(m2);
std::shared_ptr<Tensor> t2 = std::make_shared<Tensor>(TensorShape({4}), DataType(DataType::DE_UINT8));
std::shared_ptr<CVTensor> cvt2;
CVTensor::CreateFromMat(m2, &cvt2);
std::shared_ptr<Tensor> t2;
Tensor::CreateEmpty(TensorShape({4}), DataType(DataType::DE_UINT8), &t2);
t2->SetItemAt<uint8_t>({0}, 10);
t2->SetItemAt<uint8_t>({1}, 20);
t2->SetItemAt<uint8_t>({2}, 30);
@ -313,10 +330,12 @@ TEST_F(MindDataTestTensorDE, CVTensorFromMat) {
}
TEST_F(MindDataTestTensorDE, CVTensorAs) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({3, 2}), DataType(DataType::DE_FLOAT64));
std::shared_ptr<Tensor> t;
Tensor::CreateEmpty(TensorShape({3, 2}), DataType(DataType::DE_FLOAT64), &t);
t->Fill<double>(2.2);
const unsigned char *addr = t->GetBuffer();
std::shared_ptr<Tensor> t2 = std::make_shared<Tensor>(TensorShape({3, 2}), DataType(DataType::DE_FLOAT64));
std::shared_ptr<Tensor> t2;
Tensor::CreateEmpty(TensorShape({3, 2}), DataType(DataType::DE_FLOAT64), &t2);
t2->Fill<double>(4.4);
std::shared_ptr<CVTensor> ctv = CVTensor::AsCVTensor(t);
ASSERT_EQ(t->GetBuffer(), nullptr);
@ -326,6 +345,10 @@ TEST_F(MindDataTestTensorDE, CVTensorAs) {
ASSERT_EQ(ctv->GetBuffer(), addr);
ASSERT_TRUE(*t2 == *ctv);
MS_LOG(DEBUG) << *t2 << std::endl << *ctv;
cv::Mat m2 = ctv->matCopy();
m2 = 2 * m2;
ASSERT_EQ(ctv->GetBuffer(), addr);
ASSERT_TRUE(*t2 == *ctv);
}
TEST_F(MindDataTestTensorDE, CVTensorMatSlice) {
@ -336,23 +359,26 @@ TEST_F(MindDataTestTensorDE, CVTensorMatSlice) {
m.at<int32_t>(1, 0) = 40;
m.at<int32_t>(1, 1) = 50;
m.at<int32_t>(1, 2) = 60;
std::shared_ptr<CVTensor> cvt = std::make_shared<CVTensor>(m);
std::shared_ptr<CVTensor> cvt;
CVTensor::CreateFromMat(m, &cvt);
cv::Mat mat;
cvt->Mat({1}, &mat);
cvt->MatAtIndex({1}, &mat);
cv::Mat m2(3, 1, CV_32S);
m2.at<int32_t>(0) = 40;
m2.at<int32_t>(1) = 50;
m2.at<int32_t>(2) = 60;
std::shared_ptr<CVTensor> cvt2 = std::make_shared<CVTensor>(mat);
std::shared_ptr<CVTensor> cvt3 = std::make_shared<CVTensor>(m2);
std::shared_ptr<CVTensor> cvt2;
CVTensor::CreateFromMat(mat, &cvt2);
std::shared_ptr<CVTensor> cvt3;
CVTensor::CreateFromMat(m2, &cvt3);
ASSERT_TRUE(*cvt2 == *cvt3);
cvt->Mat({0}, &mat);
cvt->MatAtIndex({0}, &mat);
m2.at<int32_t>(0) = 10;
m2.at<int32_t>(1) = 20;
m2.at<int32_t>(2) = 30;
cvt2 = std::make_shared<CVTensor>(mat);
cvt3 = std::make_shared<CVTensor>(m2);
CVTensor::CreateFromMat(mat, &cvt2);
CVTensor::CreateFromMat(m2, &cvt3);
ASSERT_TRUE(*cvt2 == *cvt3);
}
@ -361,7 +387,7 @@ TEST_F(MindDataTestTensorDE, TensorIterator) {
std::vector<uint32_t> values2 = {2, 3, 4, 5, 6, 7};
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, values);
Tensor::CreateFromVector(values, &t);
auto i = t->begin<uint32_t>();
auto j = values.begin();
@ -395,11 +421,11 @@ TEST_F(MindDataTestTensorDE, TensorIterator) {
TEST_F(MindDataTestTensorDE, TensorSlice) {
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, std::vector<dsize_t>{0, 1, 2, 3, 4});
Tensor::CreateFromVector(std::vector<dsize_t>{0, 1, 2, 3, 4}, &t);
std::shared_ptr<Tensor> t2;
auto x = std::vector<dsize_t>{0, 3, 4};
std::shared_ptr<Tensor> expected;
Tensor::CreateTensor(&expected, x);
Tensor::CreateFromVector(x, &expected);
t->Slice(&t2, x);
ASSERT_EQ(*t2, *expected);
t->Slice(&t2, std::vector<dsize_t>{0, 1, 2, 3, 4});
@ -412,13 +438,13 @@ TEST_F(MindDataTestTensorDE, TensorConcatenate) {
std::vector<uint32_t> expected = {1, 2, 3, 4, 5, 6};
std::shared_ptr<Tensor> t1;
Tensor::CreateTensor(&t1, values1);
Tensor::CreateFromVector(values1, &t1);
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, values2);
Tensor::CreateFromVector(values2, &t2);
std::shared_ptr<Tensor> out;
Tensor::CreateTensor(&out, expected);
Tensor::CreateFromVector(expected, &out);
Status s = t1->Concatenate({3}, t2);
EXPECT_TRUE(s.IsOk());
@ -434,15 +460,80 @@ TEST_F(MindDataTestTensorDE, TensorConcatenate) {
}
TEST_F(MindDataTestTensorDE, TensorEmpty) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({2, 3}), DataType(DataType::DE_UINT64));
ASSERT_TRUE(t->HasData());
}
TensorPtr t;
Status rc = Tensor::CreateEmpty(TensorShape({0}), DataType(DataType::DE_UINT64), &t);
ASSERT_TRUE(rc.IsOk());
TEST_F(MindDataTestTensorDE, TensorEmptyInvalidate) {
std::vector<uint32_t> values1 = {1, 2, 3, 0, 0, 0};
std::shared_ptr<Tensor> t;
Tensor::CreateTensor(&t, values1);
t->Invalidate();
ASSERT_TRUE(t->HasData());
}
ASSERT_EQ(t->shape(), TensorShape({0}));
ASSERT_EQ(t->type(), DataType::DE_UINT64);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
rc = t->SetItemAt<uint64_t>({0}, 7);
ASSERT_TRUE(rc.IsError());
rc = Tensor::CreateEmpty(TensorShape({1, 0}), DataType(DataType::DE_STRING), &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({1, 0}));
ASSERT_EQ(t->type(), DataType::DE_STRING);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
std::vector<uint16_t> data;
rc = Tensor::CreateFromVector(data, &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0}));
ASSERT_EQ(t->type(), DataType::DE_UINT16);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
std::vector<std::string> data2;
rc = Tensor::CreateFromVector(data2, &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0}));
ASSERT_EQ(t->type(), DataType::DE_STRING);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
rc = Tensor::CreateFromVector(data, TensorShape({0, 2}), &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0, 2}));
ASSERT_EQ(t->type(), DataType::DE_UINT16);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
rc = Tensor::CreateFromVector(data2, TensorShape({0, 0, 6}), &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0, 0, 6}));
ASSERT_EQ(t->type(), DataType::DE_STRING);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
rc = Tensor::CreateFromMemory(TensorShape({0}), DataType(DataType::DE_INT8), nullptr, &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0}));
ASSERT_EQ(t->type(), DataType::DE_INT8);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
ASSERT_TRUE(!t->HasData());
rc = Tensor::CreateFromMemory(TensorShape({0}), DataType(DataType::DE_STRING), nullptr, &t);
ASSERT_TRUE(rc.IsOk());
ASSERT_EQ(t->shape(), TensorShape({0}));
ASSERT_EQ(t->type(), DataType::DE_STRING);
ASSERT_EQ(t->SizeInBytes(), 0);
ASSERT_EQ(t->GetBuffer(), nullptr);
std::vector<uint32_t> values = {1, 2, 3, 0, 0, 0};
std::shared_ptr<Tensor> t2;
Tensor::CreateFromVector(values, &t2);
ASSERT_TRUE(t2->HasData());
t2->Invalidate();
ASSERT_TRUE(!t2->HasData());
}

View File

@ -46,8 +46,8 @@ class MindDataTestTokenizerOp : public UT::Common {
TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
MS_LOG(INFO) << "Doing TestUnicodeCharTokenizerOp.";
std::unique_ptr<UnicodeCharTokenizerOp> op(new UnicodeCharTokenizerOp(true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Hello World!");
TensorRow output;
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Hello World!", &input); TensorRow output;
Status s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 12);
@ -66,7 +66,7 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
CheckEqual(output[0], {10}, "d");
CheckEqual(output[0], {11}, "!");
input = std::make_shared<Tensor>("中国 你好!");
Tensor::CreateScalar<std::string>("中国 你好!", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -80,8 +80,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
CheckEqual(output[0], {4}, "");
CheckEqual(output[0], {5}, "!");
input = std::make_shared<Tensor>("");
output.clear();
Tensor::CreateScalar<std::string>("", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -89,8 +89,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
MS_LOG(INFO) << "Out tensor3: " << output[0]->ToString();
CheckEqual(output[0], {0}, "");
input = std::make_shared<Tensor>("H");
output.clear();
Tensor::CreateScalar<std::string>("H", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -98,8 +98,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
MS_LOG(INFO) << "Out tensor4: " << output[0]->ToString();
CheckEqual(output[0], {0}, "H");
input = std::make_shared<Tensor>(" ");
output.clear();
Tensor::CreateScalar<std::string>(" ", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 2);
@ -108,8 +108,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
CheckEqual(output[0], {0}, " ");
CheckEqual(output[0], {1}, " ");
input = std::make_shared<Tensor>("");
output.clear();
Tensor::CreateScalar<std::string>("", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -121,8 +121,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeCharTokenizerOp) {
TEST_F(MindDataTestTokenizerOp, TestWhitespaceTokenizerOp) {
MS_LOG(INFO) << "Doing TestWhitespaceTokenizerOp.";
std::unique_ptr<WhitespaceTokenizerOp> op(new WhitespaceTokenizerOp(true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China.");
TensorRow output;
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China.", &input); TensorRow output;
Status s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 3);
@ -132,8 +132,8 @@ TEST_F(MindDataTestTokenizerOp, TestWhitespaceTokenizerOp) {
CheckEqual(output[0], {1}, "to");
CheckEqual(output[0], {2}, "China.");
input = std::make_shared<Tensor>(" hello");
output.clear();
Tensor::CreateScalar<std::string>(" hello", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -141,8 +141,8 @@ TEST_F(MindDataTestTokenizerOp, TestWhitespaceTokenizerOp) {
MS_LOG(INFO) << "Out tensor2: " << output[0]->ToString();
CheckEqual(output[0], {0}, "hello");
input = std::make_shared<Tensor>("hello");
output.clear();
Tensor::CreateScalar<std::string>("hello", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -150,8 +150,8 @@ TEST_F(MindDataTestTokenizerOp, TestWhitespaceTokenizerOp) {
MS_LOG(INFO) << "Out tensor3: " << output[0]->ToString();
CheckEqual(output[0], {0}, "hello");
input = std::make_shared<Tensor>("hello ");
output.clear();
Tensor::CreateScalar<std::string>("hello ", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -159,8 +159,8 @@ TEST_F(MindDataTestTokenizerOp, TestWhitespaceTokenizerOp) {
MS_LOG(INFO) << "Out tensor4: " << output[0]->ToString();
CheckEqual(output[0], {0}, "hello");
input = std::make_shared<Tensor>(" ");
output.clear();
Tensor::CreateScalar<std::string>(" ", &input);
output.clear();
s = op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
@ -174,7 +174,8 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
std::unique_ptr<UnicodeScriptTokenizerOp> keep_whitespace_op(new UnicodeScriptTokenizerOp(true, true));
std::unique_ptr<UnicodeScriptTokenizerOp> skip_whitespace_op(new UnicodeScriptTokenizerOp(false, true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China. \n 中国\t北京");
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China. \n 中国\t北京", &input);
TensorRow output;
Status s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -204,10 +205,9 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
CheckEqual(output[0], {4}, "中国");
CheckEqual(output[0], {5}, "北京");
input = std::make_shared<Tensor>(" Welcome to 中国. ");
Tensor::CreateScalar<std::string>(" Welcome to 中国. ", &input);
output.clear();
s = skip_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
s = skip_whitespace_op->Compute(TensorRow(0, {input}), &output); EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 4);
EXPECT_EQ(output[0]->Rank(), 1);
MS_LOG(INFO) << "Out tensor3: " << output[0]->ToString();
@ -230,25 +230,23 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
CheckEqual(output[0], {6}, ".");
CheckEqual(output[0], {7}, " ");
input = std::make_shared<Tensor>("Hello");
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
Tensor::CreateScalar<std::string>("Hello", &input);
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output); EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
EXPECT_EQ(output[0]->Rank(), 1);
MS_LOG(INFO) << "Out tensor5: " << output[0]->ToString();
CheckEqual(output[0], {0}, "Hello");
input = std::make_shared<Tensor>("H");
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
Tensor::CreateScalar<std::string>("H", &input);
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output); EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 1);
EXPECT_EQ(output[0]->Rank(), 1);
MS_LOG(INFO) << "Out tensor6: " << output[0]->ToString();
CheckEqual(output[0], {0}, "H");
input = std::make_shared<Tensor>("");
Tensor::CreateScalar<std::string>("", &input);
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -257,10 +255,9 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
MS_LOG(INFO) << "Out tensor7: " << output[0]->ToString();
CheckEqual(output[0], {0}, "");
input = std::make_shared<Tensor>("Hello中国Hello世界");
Tensor::CreateScalar<std::string>("Hello中国Hello世界", &input);
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output); EXPECT_TRUE(s.IsOk());
EXPECT_EQ(output[0]->Size(), 4);
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output); EXPECT_TRUE(s.IsOk()); EXPECT_EQ(output[0]->Size(), 4);
EXPECT_EQ(output[0]->Rank(), 1);
MS_LOG(INFO) << "Out tensor8: " << output[0]->ToString();
CheckEqual(output[0], {0}, "Hello");
@ -268,7 +265,7 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
CheckEqual(output[0], {2}, "Hello");
CheckEqual(output[0], {3}, "世界");
input = std::make_shared<Tensor>(" ");
Tensor::CreateScalar<std::string>(" ", &input);
output.clear();
s = keep_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -276,7 +273,7 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
EXPECT_EQ(output[0]->Rank(), 1);
MS_LOG(INFO) << "Out tensor10: " << output[0]->ToString();
CheckEqual(output[0], {0}, " ");
input = std::make_shared<Tensor>(" ");
Tensor::CreateScalar<std::string>(" ", &input);
output.clear();
s = skip_whitespace_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -289,7 +286,9 @@ TEST_F(MindDataTestTokenizerOp, TestUnicodeScriptTokenizer) {
TEST_F(MindDataTestTokenizerOp, TestCaseFold) {
MS_LOG(INFO) << "Doing TestCaseFold.";
std::unique_ptr<CaseFoldOp> case_fold_op(new CaseFoldOp());
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China. \n 中国\t北京");
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China. \n 中国\t北京", &input);
std::shared_ptr<Tensor> output;
Status s = case_fold_op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());
@ -305,7 +304,8 @@ TEST_F(MindDataTestTokenizerOp, TestNormalize) {
std::unique_ptr<NormalizeUTF8Op> nfkc_normalize_op(new NormalizeUTF8Op(NormalizeForm::kNfkc));
std::unique_ptr<NormalizeUTF8Op> nfd_normalize_op(new NormalizeUTF8Op(NormalizeForm::kNfd));
std::unique_ptr<NormalizeUTF8Op> nfkd_normalize_op(new NormalizeUTF8Op(NormalizeForm::kNfkd));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("");
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("", &input);
std::shared_ptr<Tensor> output;
Status s = nfc_normalize_op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());
@ -327,7 +327,8 @@ TEST_F(MindDataTestTokenizerOp, TestNormalize) {
TEST_F(MindDataTestTokenizerOp, TestRegexReplace) {
MS_LOG(INFO) << "Doing TestRegexReplace.";
std::unique_ptr<RegexReplaceOp> regex_replace_op(new RegexReplaceOp("\\s+", "_", true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China. \n 中国\t北京");
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China. \n 中国\t北京", &input);
std::shared_ptr<Tensor> output;
Status s = regex_replace_op->Compute(input, &output);
EXPECT_TRUE(s.IsOk());
@ -340,7 +341,8 @@ TEST_F(MindDataTestTokenizerOp, TestRegexReplace) {
TEST_F(MindDataTestTokenizerOp, TestRegexTokenizer) {
MS_LOG(INFO) << "Doing TestRegexTokenizerOp.";
std::unique_ptr<RegexTokenizerOp> regex_tokenizer_op(new RegexTokenizerOp("\\p{Cc}|\\p{Cf}|\\s+", "", true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China. \n 中国\t北京");
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China. \n 中国\t北京", &input);
TensorRow output;
Status s = regex_tokenizer_op->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());
@ -348,11 +350,11 @@ TEST_F(MindDataTestTokenizerOp, TestRegexTokenizer) {
TEST_F(MindDataTestTokenizerOp, TestBasicTokenizer) {
MS_LOG(INFO) << "Doing TestBasicTokenizer.";
//bool lower_case, bool keep_whitespace,
// bool lower_case, bool keep_whitespace,
// NormalizeForm normalization_form, bool preserve_unused_token
std::unique_ptr<BasicTokenizerOp> basic_tokenizer(new BasicTokenizerOp(true, true, NormalizeForm::kNone, false,
true));
std::shared_ptr<Tensor> input = std::make_shared<Tensor>("Welcome to China. 中国\t北京");
std::unique_ptr<BasicTokenizerOp> basic_tokenizer(new BasicTokenizerOp(true, true, NormalizeForm::kNone, false,true));
std::shared_ptr<Tensor> input;
Tensor::CreateScalar<std::string>("Welcome to China. 中国\t北京", &input);
TensorRow output;
Status s = basic_tokenizer->Compute(TensorRow(0, {input}), &output);
EXPECT_TRUE(s.IsOk());

View File

@ -35,17 +35,17 @@ class MindDataTestTruncatePairOp : public UT::Common {
TEST_F(MindDataTestTruncatePairOp, Basics) {
std::shared_ptr<Tensor> t1;
Tensor::CreateTensor(&t1, std::vector<uint32_t>({1, 2, 3}));
Tensor::CreateFromVector(std::vector<uint32_t>({1, 2, 3}), &t1);
std::shared_ptr<Tensor> t2;
Tensor::CreateTensor(&t2, std::vector<uint32_t>({4, 5}));
Tensor::CreateFromVector(std::vector<uint32_t>({4, 5}), &t2);
TensorRow in({t1, t2});
std::shared_ptr<TruncateSequencePairOp> op = std::make_shared<TruncateSequencePairOp>(4);
TensorRow out;
ASSERT_TRUE(op->Compute(in, &out).IsOk());
std::shared_ptr<Tensor> out1;
Tensor::CreateTensor(&out1, std::vector<uint32_t>({1, 2}));
Tensor::CreateFromVector(std::vector<uint32_t>({1, 2}), &out1);
std::shared_ptr<Tensor> out2;
Tensor::CreateTensor(&out2, std::vector<uint32_t>({4, 5}));
Tensor::CreateFromVector(std::vector<uint32_t>({4, 5}), &out2);
ASSERT_EQ(*out1, *out[0]);
ASSERT_EQ(*out2, *out[1]);
}

View File

@ -43,16 +43,15 @@ class MindDataTestTypeCast : public UT::Common {
template<typename FROM, typename TO>
void testCast(std::vector<FROM> values, const DataType &from, const DataType &to) {
std::shared_ptr<Tensor> t = std::make_shared<Tensor>(TensorShape({static_cast<int64_t>(values.size())}),
DataType(from),
reinterpret_cast<unsigned char *>(&values[0]));
std::shared_ptr<Tensor> t;
Tensor::CreateFromVector(values, &t);
std::unique_ptr<TypeCastOp> op(new TypeCastOp(to));
EXPECT_TRUE(op->OneToOne());
std::shared_ptr<Tensor> output;
EXPECT_TRUE(op->Compute(t, &output));
ASSERT_TRUE(t->shape() == output->shape());
ASSERT_TRUE(DataType(to)==output->type());
ASSERT_TRUE(DataType(to) == output->type());
MS_LOG(DEBUG) << *output << std::endl;
auto out = output->begin<TO>();
auto v = values.begin();

View File

@ -16,7 +16,6 @@
Testing Mask op in DE
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.text as text
@ -55,9 +54,7 @@ def test_basics_str():
def test_exceptions():
with pytest.raises(RuntimeError) as info:
compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=1, out1=[1, 2], out2=[5])
assert "Indices are empty, generated tensor would be empty" in str(info.value)
compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=1, out1=[1], out2=[])
if __name__ == "__main__":

View File

@ -121,21 +121,10 @@ def test_slice_exceptions():
slice_compare([1, 2, 3, 4, 5], 5)
assert "Index 5 is out of bounds [0,5)" in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([1, 2, 3, 4, 5], slice(0))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([1, 2, 3, 4, 5], slice(3, 1, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([1, 2, 3, 4, 5], slice(5, 10, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([1, 2, 3, 4, 5], slice(-1, -5, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
def test_slice_all_str():
@ -198,21 +187,10 @@ def test_slice_exceptions_str():
slice_compare([b"1", b"2", b"3", b"4", b"5"], 5)
assert "Index 5 is out of bounds [0,5)" in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(0))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(3, 1, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(5, 10, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
with pytest.raises(RuntimeError) as info:
slice_compare([b"1", b"2", b"3", b"4", b"5"], slice(-1, -5, 1))
assert "Indices are empty, generated tensor would be empty." in str(info.value)
if __name__ == "__main__":

View File

@ -0,0 +1,72 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import mindspore.dataset as ds
def test_tensor_empty():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S').reshape([0, 4]), np.array([1],
dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"])
for d in data:
np.testing.assert_array_equal(np.array([], dtype=np.int64), d[0])
np.testing.assert_array_equal(np.array([], dtype='S').reshape([0, 4]), d[1])
np.testing.assert_array_equal(np.array([1], dtype=np.float64), d[2])
def test_tensor_empty_map():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S'), np.array([1], dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"])
def func(x, y, z):
x = np.array([1], dtype=np.int64)
y = np.array(["Hi"], dtype='S')
z = np.array([], dtype=np.float64)
return x, y, z
data = data.map(input_columns=["col1", "col2", "col3"], operations=func)
for d in data:
np.testing.assert_array_equal(np.array([1], dtype=np.int64), d[0])
np.testing.assert_array_equal(np.array(["Hi"], dtype='S'), d[1])
np.testing.assert_array_equal(np.array([], dtype=np.float64), d[2])
def test_tensor_empty_batch():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S').reshape([0, 4]), np.array([1],
dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"]).batch(2)
for d in data:
np.testing.assert_array_equal(np.array([], dtype=np.int64).reshape([2, 0]), d[0])
np.testing.assert_array_equal(np.array([], dtype='S').reshape([2, 0, 4]), d[1])
np.testing.assert_array_equal(np.array([[1], [1]], dtype=np.float64), d[2])
if __name__ == '__main__':
test_tensor_empty()
test_tensor_empty_map()
test_tensor_empty_batch()