!31642 Add custom aicpu kernel st.

Merge pull request !31642 from linqingke/fix_custom_aicpu
This commit is contained in:
i-robot 2022-03-23 01:28:32 +00:00 committed by Gitee
commit 9efee92977
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
2 changed files with 74 additions and 1 deletions

View File

@ -105,7 +105,7 @@ bool AicpuOpKernelLoad::GetSoNeedLoadPath(const std::string &so_name, std::strin
MS_LOG(ERROR) << "Current path [" << cust_kernel_so_path << "] is invalid.";
return false;
}
auto real_cust_kernel_so_path = cust_kernel_so_path.substr(0, pos) + "/lib/";
auto real_cust_kernel_so_path = cust_kernel_so_path.substr(0, pos) + "/";
if (real_cust_kernel_so_path.size() > PATH_MAX) {
MS_LOG(ERROR) << "Current path [" << real_cust_kernel_so_path << "] is too long.";

View File

@ -0,0 +1,73 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class RandomChoiceWithMaskNet(nn.Cell):
def __init__(self):
super(RandomChoiceWithMaskNet, self).__init__()
self.random_choice_with_mask = P.RandomChoiceWithMask(count=4, seed=1)
self.random_choice_with_mask.add_prim_attr("cust_aicpu", "mindspore_aicpu_kernels")
def construct(self, x):
return self.random_choice_with_mask(x)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_random_choice_with_mask_graph():
"""
Feature: Custom aicpu feature.
Description: Test random_choice_with_mask kernel in graph mode.
Expectation: No exception.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1],
[0, 0, 0, 1]]).astype(np.bool))
expect1 = (4, 2)
expect2 = (4,)
net = RandomChoiceWithMaskNet()
output1, output2 = net(input_tensor)
assert output1.shape == expect1
assert output2.shape == expect2
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_random_choice_with_mask_pynative():
"""
Feature: Custom aicpu feature.
Description: Test random_choice_with_mask kernel in pynative mode.
Expectation: No exception.
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1],
[0, 0, 0, 1]]).astype(np.bool))
expect1 = (4, 2)
expect2 = (4,)
net = RandomChoiceWithMaskNet()
output1, output2 = net(input_tensor)
assert output1.shape == expect1
assert output2.shape == expect2