!48680 modify document duplication
Merge pull request !48680 from 冯一航/code_docs_modify_document_duplication
This commit is contained in:
commit
9dd3ce3901
|
@ -11,7 +11,7 @@ mindspore.ops.arange
|
|||
- **step** (Union[float, int, Tensor], 可选) - 表述序列中数值的步长。如果为Tensor,则shape必须为()。默认值:1。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (mindspore.dtype, 可选) - 返回序列的数据类型。默认值:None。如果未指定或者为None,将会被推断为 `start` 、 `end` 和 `step` 参数中精度最高的类型。
|
||||
- **dtype** (mindspore.dtype, 可选) - 返回Tensor的所需数据类型。默认值:None。如果未指定或者为None,将会被推断为 `start` 、 `end` 和 `step` 参数中精度最高的类型。
|
||||
|
||||
返回:
|
||||
一维Tensor,数据类型与输入数据类型一致。
|
||||
|
|
|
@ -3,9 +3,9 @@ mindspore.ops.cov
|
|||
|
||||
.. py:function:: mindspore.ops.cov(x, *, correction=1, fweights=None, aweights=None)
|
||||
|
||||
给定输入 `x` 和权重,估计输入 `x` 的协方差矩阵,其中输入的行是变量,列是观察值。
|
||||
给定输入 `x` 和权重,返回输入 `x` 的协方差矩阵(每对变量的协方差的方阵),其中输入行是变量,列是观察值。
|
||||
|
||||
协方差矩阵是每对变量的协方差的方阵。对角线包含每个变量与其自身的协方差。若 `x` 表示单个变量(标量或一维),则返回其方差。
|
||||
对角线包含每个变量及其自身的协方差。如果 `x` 是单个变量的标量或一维向量,则将返回其方差。
|
||||
|
||||
变量 :math:`a` 和 :math:`b` 的无偏样本协方差由下式给出:
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ mindspore.ops.nan_to_num
|
|||
|
||||
.. py:function:: mindspore.ops.nan_to_num(x, nan=0.0, posinf=None, neginf=None)
|
||||
|
||||
将 `x` 中的 `NaN` 、正无穷大和负无穷大值分别替换为 `nan`, `posinf`, 和 `neginf` 指定的值。默认情况下,NaN替换为0,正无穷替换为 `x` 类型支持的上限,负无穷替换为由 `x` 类型支持的下限。
|
||||
将 `x` 中的 `NaN` 、正无穷大和负无穷大值分别替换为 `nan`, `posinf`, 和 `neginf` 指定的值。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - shape为 :math:`(x_1, x_2, ..., x_R)` 的tensor。类型必须为float32或float16。
|
||||
|
|
|
@ -3,7 +3,9 @@ mindspore.ops.sgn
|
|||
|
||||
.. py:function:: mindspore.ops.sgn(x)
|
||||
|
||||
此方法为 :func:`mindspore.ops.sign` 在复数Tensor上的扩展。
|
||||
:func:`mindspore.ops.sign` 在复数上的扩展。
|
||||
对于实数输入,此方法与 :func:`mindspore.ops.sign` 一致。
|
||||
对于复数输入,此方法按照如下公式计算。
|
||||
|
||||
.. math::
|
||||
\text{out}_{i} = \begin{cases}
|
||||
|
|
|
@ -3,6 +3,6 @@ mindspore.ops.tanhshrink
|
|||
|
||||
.. py:function:: mindspore.ops.tanhshrink(x)
|
||||
|
||||
按元素计算 :math:`Tanhshrink(x)=x-Tanh(x)` 。
|
||||
Tanhshrink激活函数, :math:`Tanhshrink(x)=x-Tanh(x)` 。
|
||||
|
||||
详情请查看 :class:`mindspore.nn.Tanhshrink` 。
|
|
@ -3873,8 +3873,8 @@ class Tensor(Tensor_):
|
|||
@property
|
||||
def mT(self):
|
||||
r"""
|
||||
Returns a view of this tensor with the last two dimensions transposed.
|
||||
x.mT is equivalent to x.swapaxes(-2, -1).
|
||||
Returns the Tensor that exchanges the last two dimensions.
|
||||
Accessing the attribute, x.mT, is equal to calling the method, x.swapaxes(-2, -1).
|
||||
For details, please refer to :func:`mindspore.Tensor.swapaxes`.
|
||||
"""
|
||||
return self.swapaxes(-2, -1)
|
||||
|
|
|
@ -659,12 +659,13 @@ def mm(mat1, mat2):
|
|||
:math:`(m \times p)` Tensor, `out` will be a :math:`(n \times p)` Tensor.
|
||||
|
||||
Note:
|
||||
This function does not broadcast. For broadcasting matrix products, see :func:`mindspore.ops.matmul`.
|
||||
This function cannot support broadcasting.
|
||||
Refer to :func:`mindspore.ops.matmul` instead if you need a broadcastable function.
|
||||
|
||||
Args:
|
||||
mat1 (Tensor): The first matrix to be matrix multiplied.
|
||||
mat1 (Tensor): The first matrix of matrix multiplication.
|
||||
The last dimension of `mat1` must be the same size as the first dimension of `mat2`.
|
||||
mat2 (Tensor): The second matrix to be matrix multiplied.
|
||||
mat2 (Tensor): The second matrix of matrix multiplication.
|
||||
The last dimension of `mat1` must be the same size as the first dimension of `mat2`.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -175,9 +175,9 @@ def arange(start=0, end=None, step=1, *, dtype=None):
|
|||
If Tensor, the shape must be (). Default: 1.
|
||||
|
||||
Keyword Args:
|
||||
dtype (mindspore.dtype, optional): The desired data type of returned tensor. Default: None.
|
||||
If dtype is not given or None, the dtype is inferred to be the type with the highest precision among
|
||||
the `start`, `end` and `step` parameters.
|
||||
dtype (mindspore.dtype, optional): The required data type of returned Tensor. Default: None.
|
||||
If the value is not specified or is None, the type with the highest precision in the
|
||||
`start`, `end`, and `step` parameters is inferred.
|
||||
|
||||
Returns:
|
||||
A 1-D Tensor, with the same type as the inputs.
|
||||
|
|
|
@ -1716,10 +1716,10 @@ def signbit(x):
|
|||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> import mindspore.ops as ops
|
||||
>>> x = ms.Tensor([0.7, -1.2, 0., 2.3])
|
||||
>>> x = ms.Tensor([0.3, 1.2, 0., -2.5])
|
||||
>>> output = ops.signbit(x)
|
||||
>>> print(output)
|
||||
[False True False False]
|
||||
[False False False True]
|
||||
"""
|
||||
if not isinstance(x, Tensor):
|
||||
raise TypeError(f"For signbit, the input must be a Tensor, but got {type(x)}")
|
||||
|
@ -1729,7 +1729,9 @@ def signbit(x):
|
|||
|
||||
def sgn(x):
|
||||
r"""
|
||||
This function is an extension of :func:`mindspore.ops.sign` to complex tensors.
|
||||
Extension of :func:`mindspore.ops.sign` in the plural.
|
||||
For real number input, this function is the same as :func:`mindspore.ops.sign`.
|
||||
For complex input, this function is calculated according to the following formula.
|
||||
|
||||
.. math::
|
||||
\text{out}_{i} = \begin{cases}
|
||||
|
@ -1869,7 +1871,7 @@ def cos(x):
|
|||
|
||||
def cosine_similarity(x1, x2, dim=1, eps=1e-08):
|
||||
r"""
|
||||
Returns cosine similarity between x1 and x2, computed along dim. x1 and x2 must be broadcastable to a common shape.
|
||||
Calculate cosine similarity between `x1` and `x2` along the axis, `dim`. `x1` and `x2` must be broadcastable.
|
||||
|
||||
.. math::
|
||||
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
|
||||
|
@ -1877,8 +1879,8 @@ def cosine_similarity(x1, x2, dim=1, eps=1e-08):
|
|||
Args:
|
||||
x1 (Tensor): The first input Tensor.
|
||||
x2 (Tensor): The second input Tensor.
|
||||
dim (int, optional): Dimension along which cosine similarity is computed. Default: 1.
|
||||
eps (float, optional): Small value to avoid division by zero. Default: 1e-8.
|
||||
dim (int, optional): Axis for calculating cosine similarity. Default: 1.
|
||||
eps (float, optional): Minimal value to avoid division by zero. Default: 1e-8.
|
||||
|
||||
Returns:
|
||||
Tensor, cosine similarity between x1 and x2.
|
||||
|
@ -1923,14 +1925,13 @@ def _check_cov_weights(weights, weights_name, num_observations, valid_type, vali
|
|||
|
||||
def cov(x, *, correction=1, fweights=None, aweights=None):
|
||||
r"""
|
||||
Given the input 'x' and weight, estimate the covariance matrix of the input 'x', where the input row is the variable
|
||||
and the column is the observation value.
|
||||
Given the input `x` and weights, returns the covariance matrix (the square matrix of the covariance of each pair of
|
||||
variables) of x, where the input row is the variable and the column is the observation value.
|
||||
|
||||
The covariance matrix is the square matrix of the covariance of each pair of variables. The diagonal contains the
|
||||
covariance of each variable and its own. If 'x' represents a single variable (scalar or 1D),
|
||||
its variance is returned.
|
||||
The diagonal contains each variable and its own covariance. If x is a scalar or 1D vector of a single variable,
|
||||
its variance will be returned.
|
||||
|
||||
The unbiased sample covariance of the variables :math:`a` and :math:`b` is given by:
|
||||
The unbiased sample covariance of the variables :math:`a` and :math:`b` is given by the following formula:
|
||||
|
||||
.. math::
|
||||
\text{cov}_w(a,b) = \frac{\sum^{N}_{i = 1}(a_{i} - \bar{a})(b_{i} - \bar{b})}{N~-~1}
|
||||
|
@ -1954,12 +1955,12 @@ def cov(x, *, correction=1, fweights=None, aweights=None):
|
|||
x (Tensor): A 2D matrix, or a scalar or 1D vector of a single variable
|
||||
|
||||
Keyword Args:
|
||||
correction (int, optional): difference between the sample size and sample degrees of freedom.
|
||||
correction (int, optional): The difference between sample size and sample degrees of freedom.
|
||||
Defaults to Bessel's correction, `correction = 1` which returns the unbiased estimate,
|
||||
even if both `fweights` and `aweights` are specified. `correction = 0`
|
||||
will return the simple average. Default: 1.
|
||||
fweights (Tensor, optional): A scalar or 1D Tensor containing integer frequency weights represents
|
||||
the number of repeats of each observation vector. Its numel must equal the number of columns of `x`.
|
||||
fweights (Tensor, optional): Scalar or one-dimensional Tensor containing integer frequency weight, indicating
|
||||
the number of repetition of each observation vector. Its numel must equal the number of columns of `x`.
|
||||
Ignored if `None`. Default: None.
|
||||
aweights (Tensor, optional): A scalar or 1D Tensor containing float observation weights represents
|
||||
the importance of each observation vector. The higher the importance, the greater the corresponding value.
|
||||
|
@ -4136,19 +4137,17 @@ def is_complex(x):
|
|||
|
||||
def nan_to_num(x, nan=0.0, posinf=None, neginf=None):
|
||||
"""
|
||||
Replaces `NaN`, positive infinity, and negative infinity values in the `x` with the values
|
||||
specified by `nan`, `posinf`, and `neginf`, respectively. By default, NaN is replaced by 0,
|
||||
positive infinity is replaced by the largest finite value representable by the x dtype,
|
||||
and negative infinity is replaced by the smallest finite value representable by the x dtype.
|
||||
Replace the `NaN`, positive infinity and negative infinity values in 'x' with the
|
||||
specified values, `nan`, `posinf`, and `neginf` respectively.
|
||||
|
||||
Args:
|
||||
x (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. With float32 or float16 data type.
|
||||
nan (float): The value to replace `NaN`. Default value is 0.0.
|
||||
posinf (float): If a Number, the value to replace positive infinity values with. If None, positive
|
||||
infinity values are replaced with the greatest finite value representable by `x`'s dtype.
|
||||
nan (float): The replace value of 'NaN'. Default value is 0.0.
|
||||
posinf (float): the value to replace positive infinity values with. Default: None,
|
||||
replacing positive infinity with the maximum value supported by the data type of `x`.
|
||||
Default value is None.
|
||||
neginf (float): if a Number, the value to replace negative infinity values with. If None, negative
|
||||
infinity values are replaced with the lowest finite value representable by `x`'s dtype.
|
||||
neginf (float): the value to replace negative infinity values with. Default: None,
|
||||
replacing negative infinity with the minimum value supported by the data type of `x`.
|
||||
Default value is None.
|
||||
|
||||
Returns:
|
||||
|
@ -4162,10 +4161,10 @@ def nan_to_num(x, nan=0.0, posinf=None, neginf=None):
|
|||
``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([float('nan'), float('inf'), -float('inf'), 3.14]), mindspore.float32)
|
||||
>>> x = Tensor(np.array([float('nan'), float('inf'), -float('inf'), 5.0]), mindspore.float32)
|
||||
>>> output = ops.nan_to_num(x, 1.0, 2.0, 3.0)
|
||||
>>> print(output)
|
||||
[1. 2. 3. 3.14]
|
||||
[1. 2. 3. 5.0]
|
||||
"""
|
||||
if not isinstance(x, (Tensor, Tensor_)):
|
||||
raise TypeError("the input x must be Tensor!")
|
||||
|
@ -8315,7 +8314,7 @@ def roll(x, shifts, dims=None):
|
|||
TypeError: If `dims` is not an int, a tuple or a list.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
|
@ -10014,7 +10013,7 @@ def sum(x, dim=None, keepdim=False, *, dtype=None):
|
|||
|
||||
def tanhshrink(x):
|
||||
'''
|
||||
Applies element-wise, :math:`Tanhshrink(x)=x-Tanh(x)` .
|
||||
Tanhshrink Activation, :math:`Tanhshrink(x)=x-Tanh(x)` .
|
||||
See :class:`mindspore.nn.Tanhshrink` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
|
|
|
@ -5708,7 +5708,7 @@ def mse_loss(input_x, target, reduction='mean'):
|
|||
|
||||
def msort(x):
|
||||
r"""
|
||||
Sorts the elements of the input tensor along its first dimension in ascending order by value.
|
||||
Sorts the elements in Tensor in ascending order of value along its first dimension.
|
||||
|
||||
ops.msort(t) is equivalent to ops.Sort(axis=0)(t)[0]. See also :class:`mindspore.ops.Sort()`.
|
||||
|
||||
|
|
Loading…
Reference in New Issue