diff --git a/mindspore/python/mindspore/ops/operations/math_ops.py b/mindspore/python/mindspore/ops/operations/math_ops.py index f274aa4491d..302f5fc5b34 100644 --- a/mindspore/python/mindspore/ops/operations/math_ops.py +++ b/mindspore/python/mindspore/ops/operations/math_ops.py @@ -3596,7 +3596,7 @@ class ApproximateEqual(_LogicBinaryOp): Examples: >>> x = Tensor(np.array([1, 2, 3]), mindspore.float32) - >>> y = Tensor(np.array([2, 4, 6]), mindspore.float32) + >>> y = Tensor(np.array([2, 3, 6]), mindspore.float32) >>> approximate_equal = ops.ApproximateEqual(2.) >>> output = approximate_equal(x, y) >>> print(output) diff --git a/mindspore/python/mindspore/ops/operations/nn_ops.py b/mindspore/python/mindspore/ops/operations/nn_ops.py index 59befd181d1..1edb24cba6f 100644 --- a/mindspore/python/mindspore/ops/operations/nn_ops.py +++ b/mindspore/python/mindspore/ops/operations/nn_ops.py @@ -5988,12 +5988,12 @@ class SparseApplyAdagrad(Primitive): ... >>> net = Net() >>> grad = Tensor(np.array([[[0.7]]]).astype(np.float32)) - >>> indices = Tensor([0], mindspore.int32) + >>> indices = Tensor([1], mindspore.int32) >>> output = net(grad, indices) >>> print(output) (Tensor(shape=[1, 1, 1], dtype=Float32, value= - [[[1.99999988e-01]]]), Tensor(shape=[1, 1, 1], dtype=Float32, value= - [[[1.00000001e-01]]])) + [[[ 2.00000003e-01]]]), Tensor(shape=[1, 1, 1], dtype=Float32, value= + [[[ 1.00000001e-01]]])) """ __mindspore_signature__ = (