Fix minddata python doc
This commit is contained in:
parent
f98497ca09
commit
992da13168
|
@ -15,7 +15,7 @@
|
|||
This module provides APIs to load and process various common datasets such as MNIST,
|
||||
CIFAR-10, CIFAR-100, VOC, COCO, ImageNet, CelebA, CLUE, etc. It also supports datasets
|
||||
in standard format, including MindRecord, TFRecord, Manifest, etc. Users can also define
|
||||
their owndatasets with this module.
|
||||
their own datasets with this module.
|
||||
|
||||
Besides, this module provides APIs to sample data while loading.
|
||||
|
||||
|
|
|
@ -25,8 +25,9 @@ from mindspore import log as logger
|
|||
|
||||
__all__ = ['set_seed', 'get_seed', 'set_prefetch_size', 'get_prefetch_size', 'set_num_parallel_workers',
|
||||
'get_num_parallel_workers', 'set_numa_enable', 'get_numa_enable', 'set_monitor_sampling_interval',
|
||||
'get_monitor_sampling_interval', 'load', 'get_callback_timeout', 'set_auto_num_workers',
|
||||
'get_auto_num_workers', '_init_device_info', 'set_enable_shared_mem', 'get_enable_shared_mem']
|
||||
'get_monitor_sampling_interval', 'set_callback_timeout', 'get_callback_timeout',
|
||||
'set_auto_num_workers', 'get_auto_num_workers', 'set_enable_shared_mem', 'get_enable_shared_mem',
|
||||
'set_sending_batches', 'load', '_init_device_info']
|
||||
|
||||
INT32_MAX = 2147483647
|
||||
UINT32_MAX = 4294967295
|
||||
|
|
|
@ -22,6 +22,7 @@ high performance and parse data precisely. It also provides the following
|
|||
operations for users to preprocess data: shuffle, batch, repeat, map, and zip.
|
||||
"""
|
||||
|
||||
from ..callback import DSCallback, WaitedDSCallback
|
||||
from ..core import config
|
||||
from .cache_client import DatasetCache
|
||||
from .datasets import *
|
||||
|
@ -35,4 +36,5 @@ __all__ = ["CelebADataset", "Cifar100Dataset", "Cifar10Dataset", "CLUEDataset",
|
|||
"NumpySlicesDataset", "PaddedDataset", "TextFileDataset", "TFRecordDataset", "VOCDataset",
|
||||
"DistributedSampler", "PKSampler", "RandomSampler", "SequentialSampler", "SubsetRandomSampler",
|
||||
"WeightedRandomSampler", "SubsetSampler",
|
||||
"config", "DatasetCache", "Schema", "zip"]
|
||||
"DatasetCache", "DSCallback", "Schema", "WaitedDSCallback", "compare", "deserialize",
|
||||
"serialize", "show", "zip"]
|
||||
|
|
|
@ -655,7 +655,7 @@ class Dataset:
|
|||
option could be beneficial if the Python operation is computational heavy (default=False).
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
callbacks: (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None).
|
||||
callbacks (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None).
|
||||
|
||||
|
||||
Returns:
|
||||
|
@ -2562,7 +2562,7 @@ class MapDataset(Dataset):
|
|||
option could be beneficial if the Python operation is computational heavy (default=False).
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
callbacks: (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None)
|
||||
callbacks (DSCallback, list[DSCallback], optional): List of Dataset callbacks to be called (Default=None)
|
||||
max_rowsize(int, optional): Maximum size of row in MB that is used for shared memory allocation to copy
|
||||
data between processes. This is only used if python_multiprocessing is set to True (default 16 MB).
|
||||
|
||||
|
|
|
@ -85,7 +85,7 @@ class Fill(TensorOperation):
|
|||
The output tensor will have the same shape and type as the input tensor.
|
||||
|
||||
Args:
|
||||
fill_value (Union[str, bytes, int, float, bool])) : scalar value
|
||||
fill_value (Union[str, bytes, int, float, bool]) : scalar value
|
||||
to fill the tensor with.
|
||||
|
||||
Examples:
|
||||
|
@ -432,7 +432,7 @@ class RandomApply(TensorOperation):
|
|||
|
||||
Args:
|
||||
transforms (list): List of transformations to be applied.
|
||||
prob (float, optional): The probability to apply the transformation list (default=0.5)
|
||||
prob (float, optional): The probability to apply the transformation list (default=0.5).
|
||||
|
||||
Examples:
|
||||
>>> rand_apply = c_transforms.RandomApply([c_vision.RandomCrop(512)])
|
||||
|
|
|
@ -140,13 +140,13 @@ class Compose:
|
|||
@staticmethod
|
||||
def reduce(operations):
|
||||
"""
|
||||
Wraps adjacent Python operations in a Compose to allow mixing of Python and C++ operations
|
||||
Wraps adjacent Python operations in a Compose to allow mixing of Python and C++ operations.
|
||||
|
||||
Args:
|
||||
operations (list): list of tensor operations
|
||||
operations (list): list of tensor operations.
|
||||
|
||||
Returns:
|
||||
list, the reduced list of operations
|
||||
list, the reduced list of operations.
|
||||
"""
|
||||
if len(operations) == 1:
|
||||
if str(operations).find("c_transform") >= 0 or isinstance(operations[0], TensorOperation):
|
||||
|
|
|
@ -231,7 +231,7 @@ class CutMixBatch(ImageTensorOperation):
|
|||
|
||||
Args:
|
||||
image_batch_format (Image Batch Format): The method of padding. Can be any of
|
||||
[ImageBatchFormat.NHWC, ImageBatchFormat.NCHW]
|
||||
[ImageBatchFormat.NHWC, ImageBatchFormat.NCHW].
|
||||
alpha (float, optional): hyperparameter of beta distribution (default = 1.0).
|
||||
prob (float, optional): The probability by which CutMix is applied to each image (default = 1.0).
|
||||
|
||||
|
@ -591,7 +591,7 @@ class RandomAffine(ImageTensorOperation):
|
|||
TypeError: If degrees is not a number or a list or a tuple.
|
||||
If degrees is a list or tuple, its length is not 2.
|
||||
TypeError: If translate is specified but is not list or a tuple of length 2 or 4.
|
||||
TypeError: If scale is not a list or tuple of length 2.''
|
||||
TypeError: If scale is not a list or tuple of length 2.
|
||||
TypeError: If shear is not a list or tuple of length 2 or 4.
|
||||
TypeError: If fill_value is not a single integer or a 3-tuple.
|
||||
|
||||
|
|
|
@ -580,7 +580,10 @@ def to_type(img, output_type):
|
|||
if not is_numpy(img):
|
||||
raise TypeError("img should be NumPy image. Got {}.".format(type(img)))
|
||||
|
||||
return img.astype(output_type)
|
||||
try:
|
||||
return img.astype(output_type)
|
||||
except:
|
||||
raise RuntimeError("output_type: " + str(output_type) + " is not a valid datatype.")
|
||||
|
||||
|
||||
def rotate(img, angle, resample, expand, center, fill_value):
|
||||
|
|
Loading…
Reference in New Issue