!17669 Substitute _Loss for Loss
From: @c_34 Reviewed-by: @guoqi1024,@liangchenghui Signed-off-by: @guoqi1024,@liangchenghui
This commit is contained in:
commit
97989c3bbc
|
@ -15,6 +15,7 @@
|
|||
"""loss"""
|
||||
import mindspore
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import log
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -27,13 +28,18 @@ from mindspore._checkparam import Validator as validator
|
|||
from mindspore._checkparam import Rel
|
||||
from ... import context
|
||||
|
||||
|
||||
class _Loss(Cell):
|
||||
class Loss(Cell):
|
||||
"""
|
||||
Base class for other losses.
|
||||
|
||||
Other losses derived from this could use method `self.get_loss` to apply reduction to loss values.
|
||||
|
||||
Args:
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
|
||||
Default: "mean".
|
||||
"""
|
||||
def __init__(self, reduction='mean'):
|
||||
super(_Loss, self).__init__()
|
||||
super(Loss, self).__init__()
|
||||
if reduction is None:
|
||||
reduction = 'none'
|
||||
|
||||
|
@ -79,13 +85,27 @@ class _Loss(Cell):
|
|||
def construct(self, base, target):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class _Loss(Loss):
|
||||
"""
|
||||
Base class for other losses.
|
||||
"""
|
||||
def __init__(self, reduction='mean'):
|
||||
log.warning("'_Loss' is deprecated from version 1.3 and "
|
||||
"will be removed in a future version, use 'Loss' instead.")
|
||||
super(_Loss, self).__init__()
|
||||
|
||||
def construct(self, base, target):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_input_type(param_name, input_data, allow_dtype, cls_name):
|
||||
if input_data is not None and not isinstance(input_data, allow_dtype):
|
||||
raise TypeError(f"For '{cls_name}', the '{param_name}' should be '{allow_dtype}', "
|
||||
f"but got '{F.typeof(input_data)}'")
|
||||
|
||||
class L1Loss(_Loss):
|
||||
class L1Loss(Loss):
|
||||
r"""
|
||||
L1Loss creates a criterion to measure the mean absolute error (MAE) between :math:`x` and :math:`y` element-wise,
|
||||
where :math:`x` is the input Tensor and :math:`y` is the target Tensor.
|
||||
|
@ -135,7 +155,7 @@ class L1Loss(_Loss):
|
|||
return self.get_loss(x)
|
||||
|
||||
|
||||
class MSELoss(_Loss):
|
||||
class MSELoss(Loss):
|
||||
r"""
|
||||
MSELoss creates a criterion to measure the mean squared error (squared L2-norm) between :math:`x` and :math:`y`
|
||||
element-wise, where :math:`x` is the input and :math:`y` is the target.
|
||||
|
@ -181,7 +201,7 @@ class MSELoss(_Loss):
|
|||
return self.get_loss(x)
|
||||
|
||||
|
||||
class RMSELoss(_Loss):
|
||||
class RMSELoss(Loss):
|
||||
r"""
|
||||
RMSELoss creates a standard to measure the root mean square error between :math:`x` and :math:`y`
|
||||
element-wise, where :math:`x` is the input and :math:`y` is the target.
|
||||
|
@ -222,7 +242,7 @@ class RMSELoss(_Loss):
|
|||
return rmse_loss
|
||||
|
||||
|
||||
class MAELoss(_Loss):
|
||||
class MAELoss(Loss):
|
||||
r"""
|
||||
MAELoss creates a standard to measure the average absolute error between :math:`x` and :math:`y`
|
||||
element-wise, where :math:`x` is the input and :math:`y` is the target.
|
||||
|
@ -270,7 +290,7 @@ class MAELoss(_Loss):
|
|||
return self.get_loss(x)
|
||||
|
||||
|
||||
class SmoothL1Loss(_Loss):
|
||||
class SmoothL1Loss(Loss):
|
||||
r"""
|
||||
A loss class for learning region proposals.
|
||||
|
||||
|
@ -332,7 +352,7 @@ class SmoothL1Loss(_Loss):
|
|||
return self.smooth_l1_loss(base, target)
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyWithLogits(_Loss):
|
||||
class SoftmaxCrossEntropyWithLogits(Loss):
|
||||
r"""
|
||||
Computes softmax cross entropy between logits and labels.
|
||||
|
||||
|
@ -419,7 +439,7 @@ def _check_label_dtype(labels_dtype, cls_name):
|
|||
validator.check_type_name("labels", labels_dtype, [mstype.int32, mstype.int64], cls_name)
|
||||
|
||||
|
||||
class DiceLoss(_Loss):
|
||||
class DiceLoss(Loss):
|
||||
r"""
|
||||
The Dice coefficient is a set similarity loss. It is used to calculate the similarity between two samples. The
|
||||
value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result
|
||||
|
@ -493,7 +513,7 @@ def _check_weights(weight_shape, label_shape):
|
|||
raise ValueError("The weight shape[0] should be equal to label.shape[1].")
|
||||
|
||||
|
||||
class MultiClassDiceLoss(_Loss):
|
||||
class MultiClassDiceLoss(Loss):
|
||||
r"""
|
||||
When there are multiple classifications, label is transformed into multiple binary classifications by one hot.
|
||||
For each channel section in the channel, it can be regarded as a binary classification problem, so it can be
|
||||
|
@ -572,7 +592,7 @@ class MultiClassDiceLoss(_Loss):
|
|||
return total_loss/label.shape[1]
|
||||
|
||||
|
||||
class SampledSoftmaxLoss(_Loss):
|
||||
class SampledSoftmaxLoss(Loss):
|
||||
r"""
|
||||
Computes the sampled softmax training loss.
|
||||
|
||||
|
@ -795,7 +815,7 @@ class SampledSoftmaxLoss(_Loss):
|
|||
return out_logits, out_labels
|
||||
|
||||
|
||||
class BCELoss(_Loss):
|
||||
class BCELoss(Loss):
|
||||
r"""
|
||||
BCELoss creates a criterion to measure the binary cross entropy between the true labels and predicted labels.
|
||||
|
||||
|
@ -876,7 +896,7 @@ def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name):
|
|||
validator.check_reduce_shape(ori_shape, reduced_shape, axis, cls_name)
|
||||
|
||||
|
||||
class CosineEmbeddingLoss(_Loss):
|
||||
class CosineEmbeddingLoss(Loss):
|
||||
r"""
|
||||
Computes the similarity between two tensors using cosine distance.
|
||||
|
||||
|
@ -951,7 +971,7 @@ class CosineEmbeddingLoss(_Loss):
|
|||
return self.get_loss(output_unreduced)
|
||||
|
||||
|
||||
class BCEWithLogitsLoss(_Loss):
|
||||
class BCEWithLogitsLoss(Loss):
|
||||
r"""
|
||||
Adds sigmoid activation function to input `predict`, and uses the given logits to compute binary cross entropy
|
||||
between the target and the output.
|
||||
|
@ -1065,7 +1085,7 @@ def _check_input_dtype(targets_dtype, cls_name):
|
|||
mstype.float32], cls_name)
|
||||
|
||||
|
||||
class FocalLoss(_Loss):
|
||||
class FocalLoss(Loss):
|
||||
r"""
|
||||
The loss function proposed by Kaiming team in their paper ``Focal Loss for Dense Object Detection`` improves the
|
||||
effect of image object detection. It is a loss function to solve the imbalance of categories and the difference of
|
||||
|
|
|
@ -34,7 +34,7 @@ from mindspore.train.callback import Callback, ModelCheckpoint
|
|||
from mindspore.train import lineage_pb2
|
||||
from mindspore.train.callback._dataset_graph import DatasetGraph
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.train._utils import check_value_type
|
||||
|
||||
HYPER_CONFIG_ENV_NAME = "MINDINSIGHT_HYPER_CONFIG"
|
||||
|
@ -907,7 +907,7 @@ class SummaryCollector(Callback):
|
|||
network = cb_params.eval_network
|
||||
|
||||
for _, cell in network.cells_and_names():
|
||||
if isinstance(cell, _Loss):
|
||||
if isinstance(cell, Loss):
|
||||
loss_fn = cell
|
||||
break
|
||||
return loss_fn
|
||||
|
|
|
@ -14,13 +14,13 @@
|
|||
# ============================================================================
|
||||
"""CTC Loss."""
|
||||
import numpy as np
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CTCLoss(_Loss):
|
||||
class CTCLoss(Loss):
|
||||
"""
|
||||
CTCLoss definition
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ import mindspore.nn as nn
|
|||
import mindspore.ops.operations as P
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.context import ParallelMode
|
||||
|
@ -34,7 +34,7 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|||
from src.seq2seq import Encoder, Decoder
|
||||
|
||||
|
||||
class NLLLoss(_Loss):
|
||||
class NLLLoss(Loss):
|
||||
def __init__(self, reduction='mean'):
|
||||
super(NLLLoss, self).__init__(reduction)
|
||||
self.one_hot = P.OneHot()
|
||||
|
|
|
@ -13,14 +13,14 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network."""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import Tensor
|
||||
import mindspore.nn as nn
|
||||
|
||||
class LabelSmoothingCrossEntropy(_Loss):
|
||||
class LabelSmoothingCrossEntropy(Loss):
|
||||
|
||||
def __init__(self, smooth_factor=0.1, num_classes=1000):
|
||||
super(LabelSmoothingCrossEntropy, self).__init__()
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -19,12 +19,12 @@ from mindspore import nn
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.mobilenetV2 import MobileNetV2Backbone, MobileNetV2Head, mobilenet_v2
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
class CrossEntropyWithLabelSmooth(Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import numpy as np
|
|||
from mindspore.train.callback import Callback
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -78,7 +78,7 @@ class Monitor(Callback):
|
|||
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
|
||||
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
class CrossEntropyWithLabelSmooth(Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore import Tensor
|
|||
from mindspore import nn
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -69,7 +69,7 @@ else:
|
|||
raise ValueError("Unsupported device_target.")
|
||||
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
class CrossEntropyWithLabelSmooth(Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define evaluation loss function for network."""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +21,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class CrossEntropy_Val(_Loss):
|
||||
class CrossEntropy_Val(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits, will be used in inference process"""
|
||||
def __init__(self, smooth_factor=0, num_classes=1000):
|
||||
super(CrossEntropy_Val, self).__init__()
|
||||
|
|
|
@ -17,7 +17,7 @@ import numpy as np
|
|||
|
||||
from mindspore import Tensor
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
import mindspore.ops.operations as P
|
||||
import mindspore.ops.functional as F
|
||||
import mindspore.ops.composite as C
|
||||
|
@ -57,7 +57,7 @@ def _clip_grad(clip_type, clip_value, grad):
|
|||
return new_grad
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4):
|
||||
super(CrossEntropy, self).__init__()
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +21,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
|
||||
def __init__(self, smooth_factor=0, num_classes=1001):
|
||||
|
|
|
@ -15,14 +15,14 @@
|
|||
"""
|
||||
define loss function for network.
|
||||
"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""
|
||||
the redefined loss function with SoftmaxCrossEntropyWithLogits.
|
||||
"""
|
||||
|
|
|
@ -15,14 +15,14 @@
|
|||
"""
|
||||
define loss function for network.
|
||||
"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""
|
||||
the redefined loss function with SoftmaxCrossEntropyWithLogits.
|
||||
"""
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -15,11 +15,11 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
|
||||
class JointsMSELoss(_Loss):
|
||||
class JointsMSELoss(Loss):
|
||||
def __init__(self, use_target_weight):
|
||||
super(JointsMSELoss, self).__init__()
|
||||
self.criterion = nn.MSELoss(reduction='mean')
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -16,10 +16,10 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from src.model_utils.config import config
|
||||
|
||||
class SoftmaxCrossEntropyWithLogits(_Loss):
|
||||
class SoftmaxCrossEntropyWithLogits(Loss):
|
||||
def __init__(self):
|
||||
super(SoftmaxCrossEntropyWithLogits, self).__init__()
|
||||
self.transpose = P.Transpose()
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +21,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
|
||||
def __init__(self, smooth_factor=0., num_classes=1001):
|
||||
|
|
|
@ -14,13 +14,13 @@
|
|||
# ============================================================================
|
||||
"""CTC Loss."""
|
||||
import numpy as np
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CTCLoss(_Loss):
|
||||
class CTCLoss(Loss):
|
||||
"""
|
||||
CTCLoss definition
|
||||
|
||||
|
|
|
@ -14,10 +14,10 @@
|
|||
# ============================================================================
|
||||
"""NLLLoss cell"""
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
|
||||
class NLLLoss(_Loss):
|
||||
class NLLLoss(Loss):
|
||||
'''
|
||||
NLLLoss function
|
||||
'''
|
||||
|
|
|
@ -17,7 +17,7 @@ import mindspore.nn as nn
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore import Tensor
|
||||
|
||||
eps = 1e-24
|
||||
|
@ -41,7 +41,7 @@ class log_softmax(nn.Cell):
|
|||
return result
|
||||
|
||||
|
||||
class CEWithIgnoreIndex3D(_Loss):
|
||||
class CEWithIgnoreIndex3D(Loss):
|
||||
'''CEWithIgnoreIndex3D'''
|
||||
def __init__(self):
|
||||
super(CEWithIgnoreIndex3D, self).__init__()
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Face Recognition loss."""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -23,7 +23,7 @@ import mindspore.nn as nn
|
|||
eps = 1e-24
|
||||
|
||||
|
||||
class CrossEntropyNew(_Loss):
|
||||
class CrossEntropyNew(Loss):
|
||||
'''CrossEntropyNew'''
|
||||
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropyNew, self).__init__()
|
||||
|
@ -42,7 +42,7 @@ class CrossEntropyNew(_Loss):
|
|||
return loss
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
'''CrossEntropy'''
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
|
@ -106,7 +106,7 @@ class CrossEntropyWithIgnoreIndex(nn.Cell):
|
|||
eps = 1e-24
|
||||
|
||||
|
||||
class CEWithIgnoreIndex3D(_Loss):
|
||||
class CEWithIgnoreIndex3D(Loss):
|
||||
'''CEWithIgnoreIndex3D'''
|
||||
def __init__(self):
|
||||
super(CEWithIgnoreIndex3D, self).__init__()
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
# ============================================================================
|
||||
"""define loss function for network."""
|
||||
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -22,7 +22,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LabelSmoothingCrossEntropy(_Loss):
|
||||
class LabelSmoothingCrossEntropy(Loss):
|
||||
"""cross-entropy with label smoothing"""
|
||||
|
||||
def __init__(self, smooth_factor=0.1, num_classes=1000):
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.ops as ops
|
||||
|
@ -57,7 +57,7 @@ class SoftmaxCrossEntropyExpand(nn.Cell): # pylint: disable=missing-docstring
|
|||
return loss
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
# ============================================================================
|
||||
"""define loss function for network."""
|
||||
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -22,7 +22,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LabelSmoothingCrossEntropy(_Loss):
|
||||
class LabelSmoothingCrossEntropy(Loss):
|
||||
"""cross-entropy with label smoothing"""
|
||||
|
||||
def __init__(self, smooth_factor=0.1, num_classes=1000):
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
# ============================================================================
|
||||
"""define loss function for network."""
|
||||
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -22,7 +22,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LabelSmoothingCrossEntropy(_Loss):
|
||||
class LabelSmoothingCrossEntropy(Loss):
|
||||
"""cross-entropy with label smoothing"""
|
||||
|
||||
def __init__(self, smooth_factor=0.1, num_classes=1000):
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
|
@ -21,7 +21,7 @@ from mindspore.common import dtype as mstype
|
|||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
|
||||
def __init__(self, smooth_factor=0., num_classes=1001):
|
||||
|
|
|
@ -14,14 +14,14 @@
|
|||
# ===========================================================================
|
||||
"""DSCNN loss."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
'''Build CrossEntropy Loss.'''
|
||||
def __init__(self, smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropy, self).__init__()
|
||||
|
|
|
@ -23,7 +23,7 @@ import mindspore.ops.functional as F
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel import set_algo_parameters
|
||||
|
@ -245,7 +245,7 @@ def resnet50(class_num=10):
|
|||
class_num)
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyExpand(_Loss):
|
||||
class SoftmaxCrossEntropyExpand(Loss):
|
||||
def __init__(self, sparse=False):
|
||||
super(SoftmaxCrossEntropyExpand, self).__init__()
|
||||
self.exp = P.Exp()
|
||||
|
@ -307,15 +307,15 @@ class DataGenerator():
|
|||
data = (self.generate_data(shape)).astype(np.float32)
|
||||
stra = [1] * len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
data_parallel = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data), Tensor(data_parallel[rank_id])
|
||||
|
||||
def label_data(self, shape):
|
||||
data = (self.generate_data(shape) * 1000 / np.prod(shape)).astype(np.int32)
|
||||
stra = [1] * len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
data_parallel = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data), Tensor(data_parallel[rank_id])
|
||||
|
||||
|
||||
class Dataset():
|
||||
|
|
|
@ -16,12 +16,12 @@
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
class CrossEntropySmooth(Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
|
|
|
@ -18,11 +18,11 @@ import pytest
|
|||
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.nn.loss.loss import L1Loss
|
||||
import mindspore.context as context
|
||||
|
||||
class WeightedLoss(_Loss):
|
||||
class WeightedLoss(Loss):
|
||||
def __init__(self, reduction='mean', weights=1.0):
|
||||
super(WeightedLoss, self).__init__(reduction)
|
||||
self.abs = P.Abs()
|
||||
|
@ -72,7 +72,7 @@ def test_weighted_loss_float32():
|
|||
def test_weighted_loss_float64():
|
||||
weighted_loss(np.float64)
|
||||
|
||||
class CustomLoss(_Loss):
|
||||
class CustomLoss(Loss):
|
||||
def __init__(self, reduction='mean'):
|
||||
super(CustomLoss, self).__init__(reduction)
|
||||
self.abs = P.Abs()
|
||||
|
|
|
@ -142,7 +142,7 @@ def test_sampledsoftmaxloss_reduction_invalid():
|
|||
with pytest.raises(ValueError):
|
||||
nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, reduction="invalid")
|
||||
|
||||
# reduction can be None, as defined in _Loss
|
||||
# reduction can be None, as defined in Loss
|
||||
# with pytest.raises(ValueError):
|
||||
# nn.SampledSoftmaxLoss(num_sampled=4, num_classes=7, reduction=None) #
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import numpy as np
|
|||
from mindspore.train.callback import Callback
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -87,7 +87,7 @@ class Monitor(Callback):
|
|||
run_context.request_stop()
|
||||
|
||||
|
||||
class CrossEntropyWithLabelSmooth(_Loss):
|
||||
class CrossEntropyWithLabelSmooth(Loss):
|
||||
"""
|
||||
CrossEntropyWith LabelSmooth.
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import numpy as np
|
|||
from mindspore.train.callback import Callback
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -85,7 +85,7 @@ class Monitor(Callback):
|
|||
run_context.request_stop()
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
class CrossEntropy(Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
|
||||
def __init__(self, smooth_factor=0, num_classes=1001):
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore import context
|
|||
from mindspore.common.api import _executor
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel import _cost_model_context as cost_model_context
|
||||
|
@ -215,7 +215,7 @@ def resnet50(class_num=10):
|
|||
class_num)
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyExpand(_Loss):
|
||||
class SoftmaxCrossEntropyExpand(Loss):
|
||||
def __init__(self, sparse=False):
|
||||
super(SoftmaxCrossEntropyExpand, self).__init__()
|
||||
self.exp = P.Exp()
|
||||
|
|
|
@ -20,7 +20,7 @@ from mindspore import Tensor, Parameter
|
|||
from mindspore import context
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
@ -59,7 +59,7 @@ class CustomMatMul(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class MarginCE(_Loss):
|
||||
class MarginCE(Loss):
|
||||
def __init__(self):
|
||||
super(MarginCE, self).__init__()
|
||||
self.fc = CustomMatMul(transpose_b=True)
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore.common import dtype as mstype
|
|||
from mindspore.common.parameter import ParameterTuple
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.nn import Dense, Cell
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
|
@ -64,7 +64,7 @@ class Dataset():
|
|||
return self
|
||||
|
||||
|
||||
class GatherV2(_Loss):
|
||||
class GatherV2(Loss):
|
||||
def __init__(self, index_dim, strategy, index_size=16):
|
||||
super(GatherV2, self).__init__()
|
||||
self.pow = P.Pow()
|
||||
|
@ -195,7 +195,7 @@ def test_strategy3():
|
|||
net_trains(criterion, rank)
|
||||
|
||||
|
||||
class GatherV2Axis1(_Loss):
|
||||
class GatherV2Axis1(Loss):
|
||||
def __init__(self, index_dim, strategy, index_size=16):
|
||||
super(GatherV2Axis1, self).__init__()
|
||||
self.pow = P.Pow()
|
||||
|
|
|
@ -22,7 +22,7 @@ from mindspore import context
|
|||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.nn.loss.loss import Loss
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
|
@ -68,7 +68,7 @@ class AllToAllNet(nn.Cell):
|
|||
return x
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyWithLogits(_Loss):
|
||||
class SoftmaxCrossEntropyWithLogits(Loss):
|
||||
def __init__(self,
|
||||
sparse=False,
|
||||
reduction='none'):
|
||||
|
|
Loading…
Reference in New Issue