|
|
|
@ -17,37 +17,37 @@ from copy import copy as py_copy
|
|
|
|
|
|
|
|
|
|
import numpy as onp
|
|
|
|
|
|
|
|
|
|
import mindspore
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
|
from mindspore.ops.primitive import constexpr
|
|
|
|
|
from ..common import Tensor
|
|
|
|
|
from ..common import dtype as mstype
|
|
|
|
|
from ..ops import operations as P
|
|
|
|
|
from ..ops import functional as F
|
|
|
|
|
from ..ops.primitive import constexpr
|
|
|
|
|
|
|
|
|
|
from .utils import _check_shape, _check_shape_compile, _check_dtype, _check_is_int, \
|
|
|
|
|
_check_axes_range, _check_start_normalize, _check_shape_contain_zero, _check_is_tensor, \
|
|
|
|
|
_check_input_for_asarray
|
|
|
|
|
|
|
|
|
|
DEFAULT_FLOAT_DTYPE = mindspore.float32
|
|
|
|
|
DEFAULT_INT_DTYPE = mindspore.int32
|
|
|
|
|
DEFAULT_FLOAT_DTYPE = mstype.float32
|
|
|
|
|
DEFAULT_INT_DTYPE = mstype.int32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def array(obj, dtype=None, copy=True, ndmin=0):
|
|
|
|
|
"""
|
|
|
|
|
Create a tensor.
|
|
|
|
|
Creates a tensor.
|
|
|
|
|
|
|
|
|
|
This function creat tensors from an array-like object.
|
|
|
|
|
This function creates tensors from an array-like object.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
obj (Union[int, float, bool, list, tuple, numpy.ndarray]): Input data, in
|
|
|
|
|
any form that can be converted to an array. This includes lists, lists of
|
|
|
|
|
tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
any form that can be converted to a tensor. This includes lists, lists of
|
|
|
|
|
tuples, tuples, tuples of tuples, tuples of lists and numpy.ndarray.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.int32, or `int32`. If dtype is None, the data type
|
|
|
|
|
of the new tensor will be inferred from obj. Default is None.
|
|
|
|
|
copy (bool): If true, then the object is copied. Otherwise, a copy will
|
|
|
|
|
only be made if necessary. Default: True.
|
|
|
|
|
ndmin (int): Specifies the minimum number of dimensions that the resulting
|
|
|
|
|
array should have. Ones will be pre-pended to the shape as needed to
|
|
|
|
|
tensor should have. Ones will be pre-pended to the shape as needed to
|
|
|
|
|
meet this requirement. Default: 0
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
@ -76,15 +76,15 @@ def array(obj, dtype=None, copy=True, ndmin=0):
|
|
|
|
|
|
|
|
|
|
def asarray(a, dtype=None):
|
|
|
|
|
"""
|
|
|
|
|
Convert the input to tensor.
|
|
|
|
|
Converts the input to tensor.
|
|
|
|
|
|
|
|
|
|
This function convert tensors from an array-like object.
|
|
|
|
|
This function converts tensors from an array-like object.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a (Union[int, float, bool, list, tuple, numpy.ndarray]): Input data, in
|
|
|
|
|
any form that can be converted to an array. This includes lists, lists of
|
|
|
|
|
any form that can be converted to a tensor. This includes lists, lists of
|
|
|
|
|
tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.int32, or `int32`. If dtype is None, the data type
|
|
|
|
|
of the new tensor will be inferred from a. Default is None.
|
|
|
|
|
|
|
|
|
@ -112,7 +112,7 @@ def asarray(a, dtype=None):
|
|
|
|
|
dtype = DEFAULT_INT_DTYPE
|
|
|
|
|
|
|
|
|
|
if isinstance(a, bool) and (dtype is None):
|
|
|
|
|
dtype = mindspore.bool_
|
|
|
|
|
dtype = mstype.bool_
|
|
|
|
|
|
|
|
|
|
if isinstance(a, (list, tuple)):
|
|
|
|
|
a = onp.asarray(a)
|
|
|
|
@ -126,14 +126,14 @@ def asarray(a, dtype=None):
|
|
|
|
|
|
|
|
|
|
if isinstance(a, onp.ndarray) and dtype is None:
|
|
|
|
|
if a.dtype is onp.dtype('bool'):
|
|
|
|
|
dtype = mindspore.bool_
|
|
|
|
|
dtype = mstype.bool_
|
|
|
|
|
elif a.dtype is onp.dtype('int'):
|
|
|
|
|
dtype = DEFAULT_INT_DTYPE
|
|
|
|
|
elif a.dtype is onp.dtype('float'):
|
|
|
|
|
dtype = DEFAULT_FLOAT_DTYPE
|
|
|
|
|
a = Tensor.from_numpy(a)
|
|
|
|
|
|
|
|
|
|
# If a is already an tensor and we don't need to cast dtype, return a
|
|
|
|
|
# If a is already a tensor and we don't need to cast dtype, return a
|
|
|
|
|
if isinstance(a, Tensor):
|
|
|
|
|
if dtype is None:
|
|
|
|
|
return a
|
|
|
|
@ -146,16 +146,16 @@ def asarray(a, dtype=None):
|
|
|
|
|
|
|
|
|
|
def asfarray(a, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
"""
|
|
|
|
|
Similar to asarray, convert the input to an float array.
|
|
|
|
|
Similar to asarray, converts the input to a float tensor.
|
|
|
|
|
|
|
|
|
|
If non-float dtype is defined, this function will return a float32 Tensor instead.
|
|
|
|
|
If non-float dtype is defined, this function will return a float32 tensor instead.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a (Union[int, float, bool, list, tuple, numpy.ndarray]): Input data, in
|
|
|
|
|
any form that can be converted to an array. This includes lists, lists of
|
|
|
|
|
tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mindspore.float32.
|
|
|
|
|
any form that can be converted to a tensor. This includes lists, lists of
|
|
|
|
|
tuples, tuples, tuples of tuples, tuples of lists and numpy.ndarray.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mstype.float32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, generated tensor with the specified float dtype.
|
|
|
|
@ -171,7 +171,7 @@ def asfarray(a, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
dtype = _check_dtype(dtype)
|
|
|
|
|
_ = _check_input_for_asarray(a)
|
|
|
|
|
|
|
|
|
|
if dtype not in (mindspore.float16, mindspore.float32, mindspore.float64):
|
|
|
|
|
if dtype not in (mstype.float16, mstype.float32, mstype.float64):
|
|
|
|
|
dtype = DEFAULT_FLOAT_DTYPE
|
|
|
|
|
|
|
|
|
|
if isinstance(a, (list, tuple)):
|
|
|
|
@ -185,7 +185,7 @@ def asfarray(a, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
|
|
|
|
|
def copy_(a):
|
|
|
|
|
"""
|
|
|
|
|
Return an tensor copy of the given object.
|
|
|
|
|
Returns a tensor copy of the given object.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a (Tensor): Input tensor.
|
|
|
|
@ -198,20 +198,22 @@ def copy_(a):
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> print(np.copy([1,2,3]))
|
|
|
|
|
[1. 2. 3.]
|
|
|
|
|
>>> x = np.ones((2,2))
|
|
|
|
|
>>> print(np.copy(x))
|
|
|
|
|
[[1. 1.]
|
|
|
|
|
[1. 1.]]
|
|
|
|
|
"""
|
|
|
|
|
return py_copy(a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ones(shape, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
"""
|
|
|
|
|
Return a new array of given shape and type, filled with ones.
|
|
|
|
|
Returns a new tensor of given shape and type, filled with ones.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape (Union[int, tuple, list]): the shape of the new array.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mindspore.float32.
|
|
|
|
|
shape (Union[int, tuple, list]): the shape of the new tensor.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mstype.float32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, with the designated shape and dtype, filled with ones.
|
|
|
|
@ -231,17 +233,17 @@ def ones(shape, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
dtype = _check_dtype(dtype)
|
|
|
|
|
fill = P.Fill()
|
|
|
|
|
output = fill(dtype, shape, 1)
|
|
|
|
|
return Tensor(output, dtype=dtype)
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def zeros(shape, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
"""
|
|
|
|
|
Return a new array of given shape and type, filled with zeros.
|
|
|
|
|
Returns a new tensor of given shape and type, filled with zeros.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape (Union[int, tuple, list]): the shape of the new array.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mindspore.float32.
|
|
|
|
|
shape (Union[int, tuple, list]): the shape of the new tensor.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mstype.float32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, with the designated shape and dtype, filled with zeros.
|
|
|
|
@ -261,19 +263,19 @@ def zeros(shape, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
dtype = _check_dtype(dtype)
|
|
|
|
|
fill = P.Fill()
|
|
|
|
|
output = fill(dtype, shape, 0)
|
|
|
|
|
return Tensor(output, dtype=dtype)
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def full(shape, fill_value, dtype=None):
|
|
|
|
|
"""
|
|
|
|
|
Return a new array of given shape and type, filled with fill_value.
|
|
|
|
|
Returns a new tensor of given shape and type, filled with fill_value.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape (Union[int, tuple(int), list(int)]): Shape of the new array, e.g.,
|
|
|
|
|
shape (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g.,
|
|
|
|
|
(2, 3) or 2.
|
|
|
|
|
fill_value (Union[int, float, bool, list, tuple]): scalar or array_like
|
|
|
|
|
fill value.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`, if dtype is None, the data type
|
|
|
|
|
of the new tensor will be inferred from fill_value. Default is None.
|
|
|
|
|
|
|
|
|
@ -301,16 +303,16 @@ def full(shape, fill_value, dtype=None):
|
|
|
|
|
|
|
|
|
|
# if fill_value is array_like or shape contains zero. fall back to original
|
|
|
|
|
# numpy creation
|
|
|
|
|
return Tensor(onp.full(shape, fill_value, mindspore.dtype_to_nptype(dtype)))
|
|
|
|
|
return Tensor(onp.full(shape, fill_value, mstype.dtype_to_nptype(dtype)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def arange(*args, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Return evenly spaced values within a given interval.
|
|
|
|
|
Returns evenly spaced values within a given interval.
|
|
|
|
|
|
|
|
|
|
Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop`].
|
|
|
|
|
The endpoint of the interval can optionally be excluded.
|
|
|
|
|
The current implementation is a direct wrapper on top of numpy.arange, except
|
|
|
|
|
The current implementation is a direct wrapper on top of numpy.arange, except that
|
|
|
|
|
the default dtype is float32 and int32, compare to float64 and int64 for numpy
|
|
|
|
|
implementation.
|
|
|
|
|
|
|
|
|
@ -324,12 +326,12 @@ def arange(*args, **kwargs):
|
|
|
|
|
out, this is the distance between two adjacent values, out[i+1] - out[i].
|
|
|
|
|
The default step size is 1. If step is specified as a position argument,
|
|
|
|
|
start must also be given.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. If dtype is None, the data type
|
|
|
|
|
of the new tensor will be inferred from start, stop and step. Default is None.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
arangend Tensor, array of evenly spaced values.
|
|
|
|
|
arangend tensor of evenly spaced values.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
@ -361,16 +363,16 @@ def arange(*args, **kwargs):
|
|
|
|
|
|
|
|
|
|
if 'dtype' in kwargs and kwargs['dtype'] is not None:
|
|
|
|
|
final_dtype = _check_dtype(kwargs['dtype'])
|
|
|
|
|
final_dtype = mindspore.dtype_to_nptype(final_dtype)
|
|
|
|
|
final_dtype = mstype.dtype_to_nptype(final_dtype)
|
|
|
|
|
kwargs['dtype'] = final_dtype
|
|
|
|
|
out = onp.arange(*args, **kwargs)
|
|
|
|
|
out = Tensor.from_numpy(out)
|
|
|
|
|
return Tensor(out)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0):
|
|
|
|
|
"""
|
|
|
|
|
Return evenly spaced values within a given interval.
|
|
|
|
|
Returns evenly spaced values within a given interval.
|
|
|
|
|
|
|
|
|
|
The current implementation is a direct wrapper on top of numpy.linspace, except
|
|
|
|
|
the default dtype is float32, compare to float64 for numpy,
|
|
|
|
@ -386,7 +388,7 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis
|
|
|
|
|
not included. Default is True.
|
|
|
|
|
retstep (bool, optional): If True, return (`samples`, `step`), where `step` is
|
|
|
|
|
the spacing between samples.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`.If `dtype` is None, infer the data
|
|
|
|
|
type from other input arguments. Default is None.
|
|
|
|
|
axis (int, optional): The axis in the result to store the samples. Relevant
|
|
|
|
@ -420,7 +422,7 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis
|
|
|
|
|
final_dtype = None
|
|
|
|
|
if dtype is not None:
|
|
|
|
|
final_dtype = _check_dtype(dtype)
|
|
|
|
|
final_dtype = mindspore.dtype_to_nptype(final_dtype)
|
|
|
|
|
final_dtype = mstype.dtype_to_nptype(final_dtype)
|
|
|
|
|
else:
|
|
|
|
|
final_dtype = onp.float32
|
|
|
|
|
|
|
|
|
@ -438,7 +440,7 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis
|
|
|
|
|
|
|
|
|
|
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0):
|
|
|
|
|
"""
|
|
|
|
|
Return numbers spaced evenly on a log scale.
|
|
|
|
|
Returns numbers spaced evenly on a log scale.
|
|
|
|
|
|
|
|
|
|
In linear space, the sequence starts at base ** start (base to the power of
|
|
|
|
|
start) and ends with base ** stop (see endpoint below).
|
|
|
|
@ -457,11 +459,11 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0):
|
|
|
|
|
base (Union[int, float], optional): The base of the log space. The step size
|
|
|
|
|
between the elements in ln(samples) / ln(base) (or log_base(samples))
|
|
|
|
|
is uniform. Default is 10.0.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`.If `dtype` is None, infer the data
|
|
|
|
|
type from other input arguments. Default is None.
|
|
|
|
|
axis (int, optional): The axis in the result to store the samples. Relevant
|
|
|
|
|
only if start or stop are array-like. By default (0), the samples will
|
|
|
|
|
only if start or stop is array-like. By default (0), the samples will
|
|
|
|
|
be along a new axis inserted at the beginning. Use -1 to get an axis at the end.
|
|
|
|
|
Default is 0.
|
|
|
|
|
|
|
|
|
@ -486,7 +488,7 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0):
|
|
|
|
|
final_dtype = None
|
|
|
|
|
if dtype is not None:
|
|
|
|
|
final_dtype = _check_dtype(dtype)
|
|
|
|
|
final_dtype = mindspore.dtype_to_nptype(final_dtype)
|
|
|
|
|
final_dtype = mstype.dtype_to_nptype(final_dtype)
|
|
|
|
|
else:
|
|
|
|
|
final_dtype = onp.float32
|
|
|
|
|
|
|
|
|
@ -499,7 +501,7 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0):
|
|
|
|
|
|
|
|
|
|
def eye(N, M=None, k=0, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
"""
|
|
|
|
|
Return a 2-D array with ones on the diagnoal and zeros elsewhere.
|
|
|
|
|
Returns a 2-D tensor with ones on the diagnoal and zeros elsewhere.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
N (int): Number of rows in the output, must be larger than 0.
|
|
|
|
@ -508,11 +510,11 @@ def eye(N, M=None, k=0, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
k (int, optional): Index of the diagonal: 0 (the default) refers to the main
|
|
|
|
|
diagonal, a positive value refers to an upper diagonal, and a negative value
|
|
|
|
|
to a lower diagonal. Default is 0.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mindspore.float32.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mstype.float32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
result (Tensor): A tensor array of shape (N,M). An array where all elements
|
|
|
|
|
result (Tensor): A tensor of shape (N,M). A tensor where all elements
|
|
|
|
|
are equal to zero, except for the k-th diagonal, whose values are equal to one.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
@ -542,15 +544,15 @@ def eye(N, M=None, k=0, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
|
|
|
|
|
def identity(n, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
"""
|
|
|
|
|
Return the identity array.
|
|
|
|
|
Returns the identity tensor.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
n (int): Number of rows and columns in the output, must be larger than 0.
|
|
|
|
|
dtype (Union[mindspore.dtype, str], optional): Designated array dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mindspore.float32.
|
|
|
|
|
dtype (Union[mstype.dtype, str], optional): Designated tensor dtype, can
|
|
|
|
|
be in format of np.float32, or `float32`. Default is mstype.float32.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
result (Tensor): A tensor array of shape (n,n). An array where all elements
|
|
|
|
|
result (Tensor): A tensor of shape (n,n). A tensor where all elements
|
|
|
|
|
are equal to zero, except for the diagonal, whose values are equal to one.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
@ -569,7 +571,7 @@ def identity(n, dtype=DEFAULT_FLOAT_DTYPE):
|
|
|
|
|
@constexpr
|
|
|
|
|
def _prepare_shape_for_expand_dims(shape, axes):
|
|
|
|
|
"""
|
|
|
|
|
Creat the expanded new shape based on the shape and given axes
|
|
|
|
|
Creates the expanded new shape based on the shape and given axes
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape (tuple): the shape of the tensor
|
|
|
|
@ -588,7 +590,7 @@ def _prepare_shape_for_expand_dims(shape, axes):
|
|
|
|
|
new_shape_length += 1
|
|
|
|
|
if axes >= new_shape_length or axes < -new_shape_length:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"axis {axes} is out of bounds for array of dimension {new_shape_length}")
|
|
|
|
|
f"axis {axes} is out of bounds for tensor of dimension {new_shape_length}")
|
|
|
|
|
axes = {axes}
|
|
|
|
|
|
|
|
|
|
elif isinstance(axes, (list, tuple)):
|
|
|
|
@ -596,7 +598,7 @@ def _prepare_shape_for_expand_dims(shape, axes):
|
|
|
|
|
for axis in axes:
|
|
|
|
|
if axis >= new_shape_length or axis < -new_shape_length:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"axis {axis} is out of bounds for array of dimension {new_shape_length}")
|
|
|
|
|
f"axis {axis} is out of bounds for tensor of dimension {new_shape_length}")
|
|
|
|
|
axes = set(axes)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
@ -614,9 +616,9 @@ def _prepare_shape_for_expand_dims(shape, axes):
|
|
|
|
|
|
|
|
|
|
def expand_dims(a, axis):
|
|
|
|
|
"""
|
|
|
|
|
Expand the shape of an array.
|
|
|
|
|
Expands the shape of a tensor.
|
|
|
|
|
|
|
|
|
|
Insert a new axis that will appear at the axis position in the expanded array shape.
|
|
|
|
|
Inserts a new axis that will appear at the axis position in the expanded tensor shape.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a (Tensor): Input tensor array.
|
|
|
|
@ -633,8 +635,8 @@ def expand_dims(a, axis):
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((2,2))
|
|
|
|
|
>>> x = np.expand_dims(x,0)
|
|
|
|
|
>>> print(x,shape)
|
|
|
|
|
(2,2,1)
|
|
|
|
|
>>> print(x.shape)
|
|
|
|
|
(1, 2, 2)
|
|
|
|
|
"""
|
|
|
|
|
shape = F.shape(a)
|
|
|
|
|
# yield expanded shape based on the axes
|
|
|
|
@ -645,11 +647,11 @@ def expand_dims(a, axis):
|
|
|
|
|
@constexpr
|
|
|
|
|
def _prepare_shape_for_squeeze(shape, axes):
|
|
|
|
|
"""
|
|
|
|
|
Creat the squeezed new shape based on the tensor and given axes.
|
|
|
|
|
Creates the squeezed new shape based on the tensor and given axes.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
shape (tuple): the shape of the tensor
|
|
|
|
|
axes Union(None, int, tuple(int), list(int)): the axes with dimensions squeezed.
|
|
|
|
|
axes Union[None, int, tuple(int), list(int)]: the axes with dimensions squeezed.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
new_shape(tuple): the shape with dimensions squeezed.
|
|
|
|
@ -661,14 +663,14 @@ def _prepare_shape_for_squeeze(shape, axes):
|
|
|
|
|
if isinstance(axes, int):
|
|
|
|
|
if axes >= ndim or axes < -ndim:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"axis {axes} is out of bounds for array of dimension {ndim}")
|
|
|
|
|
f"axis {axes} is out of bounds for tensor of dimension {ndim}")
|
|
|
|
|
axes = {axes}
|
|
|
|
|
|
|
|
|
|
elif isinstance(axes, (list, tuple)):
|
|
|
|
|
for axis in axes:
|
|
|
|
|
if axis >= ndim or axis < -ndim:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"axis {axis} is out of bounds for array of dimension {ndim}")
|
|
|
|
|
f"axis {axis} is out of bounds for tensor of dimension {ndim}")
|
|
|
|
|
axes = set(axes)
|
|
|
|
|
|
|
|
|
|
elif axes is not None:
|
|
|
|
@ -690,7 +692,7 @@ def _prepare_shape_for_squeeze(shape, axes):
|
|
|
|
|
|
|
|
|
|
def squeeze(a, axis=None):
|
|
|
|
|
"""
|
|
|
|
|
Remove single-dimensional entries from the shape of an array.
|
|
|
|
|
Removes single-dimensional entries from the shape of an tensor.
|
|
|
|
|
|
|
|
|
|
This is a temporary solution to support CPU backend. Will be changed
|
|
|
|
|
once CPU backend supports P.Squeeze().
|
|
|
|
@ -709,8 +711,8 @@ def squeeze(a, axis=None):
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((1,2,2,1))
|
|
|
|
|
>>> x = np.squeeze(x)
|
|
|
|
|
>>> print(x,shape)
|
|
|
|
|
(2,2)
|
|
|
|
|
>>> print(x.shape)
|
|
|
|
|
(2, 2)
|
|
|
|
|
"""
|
|
|
|
|
shape = F.shape(a)
|
|
|
|
|
# yield squeezed shape based on the axes
|
|
|
|
@ -720,11 +722,11 @@ def squeeze(a, axis=None):
|
|
|
|
|
|
|
|
|
|
def transpose(a, axes=None):
|
|
|
|
|
"""
|
|
|
|
|
Reverse or permute the axes of an array; returns the modified array.
|
|
|
|
|
Reverses or permutes the axes of a tensor; returns the modified tensor.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a (Tensor): a tensor to be transposed
|
|
|
|
|
axes Union[None, tuple, list]: the axes order, if axes is None, transpose
|
|
|
|
|
axes (Union[None, tuple, list]): the axes order, if axes is None, transpose
|
|
|
|
|
the entire tensor. Default is None.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
@ -737,8 +739,8 @@ def transpose(a, axes=None):
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((1,2,3))
|
|
|
|
|
>>> x = np.transpose(x)
|
|
|
|
|
>>> print(x,shape)
|
|
|
|
|
(3,2,1)
|
|
|
|
|
>>> print(x.shape)
|
|
|
|
|
(3, 2, 1)
|
|
|
|
|
"""
|
|
|
|
|
if axes is None:
|
|
|
|
|
shape = F.shape(a)
|
|
|
|
@ -753,7 +755,7 @@ def transpose(a, axes=None):
|
|
|
|
|
|
|
|
|
|
def rollaxis(x, axis, start=0):
|
|
|
|
|
"""
|
|
|
|
|
Roll the specified axis backwards, until it lies in the given position.
|
|
|
|
|
Rolls the specified axis backwards, until it lies in the given position.
|
|
|
|
|
The positions of the other axes do not change relative to one another.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
@ -761,8 +763,10 @@ def rollaxis(x, axis, start=0):
|
|
|
|
|
axis (int): The axis to be rolled.
|
|
|
|
|
start (int):
|
|
|
|
|
- When start >= 0:
|
|
|
|
|
- When start <= axis: the axis is rolled back until it lies in this position (start).
|
|
|
|
|
- When start > axis: the axis is rolled until it lies before this position (start).
|
|
|
|
|
- When start <= axis: the axis is rolled back until it lies in
|
|
|
|
|
this position (start).
|
|
|
|
|
- When start > axis: the axis is rolled until it lies before this
|
|
|
|
|
position (start).
|
|
|
|
|
- When start < 0: the start will be normalized as follows:
|
|
|
|
|
start ........... Normalized start
|
|
|
|
|
-(x.ndim+1) raise ValueError
|
|
|
|
@ -786,14 +790,11 @@ def rollaxis(x, axis, start=0):
|
|
|
|
|
start is not in the range from -ndim to ndim.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> import mindspore
|
|
|
|
|
>>> import mindspore.numpy as mnp
|
|
|
|
|
>>> from mindspore import Tensor
|
|
|
|
|
>>> import numpy as onp
|
|
|
|
|
>>> input_x = Tensor(onp.ones((2,3,4)), mindspore.float32)
|
|
|
|
|
>>> output = mnp.rollaxis(x, 0, 2)
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((2,3,4))
|
|
|
|
|
>>> output = np.rollaxis(x, 0, 2)
|
|
|
|
|
>>> print(output.shape)
|
|
|
|
|
(3,2,4)
|
|
|
|
|
(3, 2, 4)
|
|
|
|
|
"""
|
|
|
|
|
_check_is_int(axis)
|
|
|
|
|
_check_is_int(start)
|
|
|
|
@ -826,15 +827,15 @@ def rollaxis(x, axis, start=0):
|
|
|
|
|
|
|
|
|
|
def swapaxes(x, axis1, axis2):
|
|
|
|
|
"""
|
|
|
|
|
Interchange two axes of a tensor.
|
|
|
|
|
Interchanges two axes of a tensor.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
x (Tensor): A Tensor to be transposed.
|
|
|
|
|
x (Tensor): A tensor to be transposed.
|
|
|
|
|
axis1 (int): First axis.
|
|
|
|
|
axis2 (int): Second axis.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Transposed Tensor. Has the same data type as the original tensor x.
|
|
|
|
|
Transposed tensor, has the same data type as the original tensor x.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
TypeError: If axis1 or axis2 is not integer.
|
|
|
|
@ -844,12 +845,9 @@ def swapaxes(x, axis1, axis2):
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> import mindspore
|
|
|
|
|
>>> import mindspore.numpy as mnp
|
|
|
|
|
>>> from mindspore import Tensor
|
|
|
|
|
>>> import numpy as onp
|
|
|
|
|
>>> input_x = Tensor(onp.ones((2,3,4)), mindspore.float32)
|
|
|
|
|
>>> output = mnp.swapaxes(x, 0, 2)
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((2,3,4))
|
|
|
|
|
>>> output = np.swapaxes(x, 0, 2)
|
|
|
|
|
>>> print(output.shape)
|
|
|
|
|
(4,3,2)
|
|
|
|
|
"""
|
|
|
|
@ -881,10 +879,10 @@ def swapaxes(x, axis1, axis2):
|
|
|
|
|
|
|
|
|
|
def reshape(x, new_shape):
|
|
|
|
|
"""
|
|
|
|
|
Reshape a tensor without changing its data.
|
|
|
|
|
Reshapes a tensor without changing its data.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
x (Tensor): A Tensor to be reshaped.
|
|
|
|
|
x (Tensor): A tensor to be reshaped.
|
|
|
|
|
new_shape (Union[int, list(int), tuple(int)]): The new shape should be
|
|
|
|
|
compatible with the original shape. If the tuple has only one element,
|
|
|
|
|
the result will be a 1-D tensor of that length. One shape dimension
|
|
|
|
@ -902,19 +900,19 @@ def reshape(x, new_shape):
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
|
|
|
|
>>> reshape = mindspore.numpy.reshape()
|
|
|
|
|
>>> output = reshape(x, (3, 2))
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.asarray([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]])
|
|
|
|
|
>>> output = np.reshape(x, (3, 2))
|
|
|
|
|
>>> print(output)
|
|
|
|
|
[[-0.1 0.3]
|
|
|
|
|
[ 3.6 0.4]
|
|
|
|
|
[ 0.5 -3.2]]
|
|
|
|
|
>>> output = reshape(x, (3, -1))
|
|
|
|
|
[ 0.5 -3.2]]
|
|
|
|
|
>>> output = np.reshape(x, (3, -1))
|
|
|
|
|
>>> print(output)
|
|
|
|
|
[[-0.1 0.3]
|
|
|
|
|
[ 3.6 0.4]
|
|
|
|
|
[ 0.5 -3.2]]
|
|
|
|
|
>>> output = reshape(x, (6, ))
|
|
|
|
|
[ 3.6 0.4]
|
|
|
|
|
[ 0.5 -3.2]]
|
|
|
|
|
>>> output = np.reshape(x, (6, ))
|
|
|
|
|
>>> print(output)
|
|
|
|
|
[-0.1 0.3 3.6 0.4 0.5 -3.2]
|
|
|
|
|
"""
|
|
|
|
@ -924,7 +922,7 @@ def reshape(x, new_shape):
|
|
|
|
|
|
|
|
|
|
def ravel(x):
|
|
|
|
|
"""
|
|
|
|
|
Return a contiguous flattened tensor.
|
|
|
|
|
Returns a contiguous flattened tensor.
|
|
|
|
|
|
|
|
|
|
A 1-D tensor, containing the elements of the input, is returned.
|
|
|
|
|
|
|
|
|
@ -932,18 +930,15 @@ def ravel(x):
|
|
|
|
|
x (Tensor): A tensor to be flattened.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Flattened Tensor. Has the same data type as the original tensor x.
|
|
|
|
|
Flattened tensor, has the same data type as the original tensor x.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> import mindspore
|
|
|
|
|
>>> import mindspore.numpy as mnp
|
|
|
|
|
>>> from mindspore import Tensor
|
|
|
|
|
>>> import numpy as onp
|
|
|
|
|
>>> input_x = Tensor(onp.ones((2,3,4)), mindspore.float32)
|
|
|
|
|
>>> output = mnp.ravel(x)
|
|
|
|
|
>>> import mindspore.numpy as np
|
|
|
|
|
>>> x = np.ones((2,3,4))
|
|
|
|
|
>>> output = np.ravel(x)
|
|
|
|
|
>>> print(output.shape)
|
|
|
|
|
(24,)
|
|
|
|
|
"""
|
|
|
|
@ -953,8 +948,8 @@ def ravel(x):
|
|
|
|
|
@constexpr
|
|
|
|
|
def _move_axes_for_concatenate(arr_shape, axis):
|
|
|
|
|
"""
|
|
|
|
|
move axis 0 to the disiganated position, while keep other axes' relative
|
|
|
|
|
positions unchanged, only used if a single array is concatenated.
|
|
|
|
|
Moves axis 0 to the disiganated position, while keeps other axes' relative
|
|
|
|
|
positions unchanged, only used if a single tensor is concatenated.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
original_axes = tuple(range(len(arr_shape)))
|
|
|
|
@ -966,17 +961,17 @@ def _move_axes_for_concatenate(arr_shape, axis):
|
|
|
|
|
|
|
|
|
|
def concatenate(arrays, axis=0):
|
|
|
|
|
"""
|
|
|
|
|
Join a sequence of arrays along an existing axis.
|
|
|
|
|
Joins a sequence of tensors along an existing axis.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
arrays: Union[Tensor, tuple(Tensor), list(Tensor)], a Tensor or a list
|
|
|
|
|
of Tensor to be concatenated.
|
|
|
|
|
arrays: Union[Tensor, tuple(Tensor), list(Tensor)], a tensor or a list
|
|
|
|
|
of tensors to be concatenated.
|
|
|
|
|
|
|
|
|
|
axis (int, optional): The axis along which the arrays will be joined,
|
|
|
|
|
if axis is None, arrays are flattened before use. Default is 0.
|
|
|
|
|
axis (int, optional): The axis along which the tensors will be joined,
|
|
|
|
|
if axis is None, tensors are flattened before use. Default is 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, a Tensor concatenated from a Tensor or a list of Tensors.
|
|
|
|
|
Tensor, a tensor concatenated from a tensor or a list of tensors.
|
|
|
|
|
|
|
|
|
|
Supported Platforms:
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
@ -986,8 +981,8 @@ def concatenate(arrays, axis=0):
|
|
|
|
|
>>> x1 = np.ones((1,2,3))
|
|
|
|
|
>>> x2 = np.ones((1,2,1))
|
|
|
|
|
>>> x = np.concatenate((x1, x2), axis=-1)
|
|
|
|
|
>>> print(x,shape)
|
|
|
|
|
(1,2,4)
|
|
|
|
|
>>> print(x.shape)
|
|
|
|
|
(1, 2, 4)
|
|
|
|
|
"""
|
|
|
|
|
array_type = F.typeof(arrays)
|
|
|
|
|
if _check_is_tensor(array_type):
|
|
|
|
|