!44266 modify format

Merge pull request !44266 from 俞涵/code_docs_1010
This commit is contained in:
i-robot 2022-10-20 06:40:13 +00:00 committed by Gitee
commit 8f42725575
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
9 changed files with 32 additions and 26 deletions

View File

@ -1,7 +1,7 @@
mindspore.Tensor.reverse_sequence
==================================
.. py:function:: mindspore.Tensor.reverse_sequce(seq_lengths, seq_dim=0, batch_dim=0)
.. py:method:: mindspore.Tensor.reverse_sequce(seq_lengths, seq_dim=0, batch_dim=0)
对输入序列进行部分反转。

View File

@ -13,7 +13,7 @@ mindspore.data_sink
- **steps** (int) - 总的运行次数。 `steps` 必须为正整数。
- **sink_size** (int) - 控制每次下沉的数据执行次数。 `sink_size` 必须为正整数。默认值1。
- **jit_config** (JitConfig) - 编译时所使用的JitConfig配置项详细可参考 :class:`mindspore.JitConfig` 。默认值None表示以PyNative模式运行。
- **input_signature** (Tensor) - 用于表示输入参数的Tensor。Tensor的shape和dtype将作为函数的输入shape和dtype。默认值None。
- **input_signature** (Union[Tensor, List or Tuple of Tensors]) - 用于表示输入参数的Tensor。Tensor的shape和dtype将作为函数的输入shape和dtype。默认值None。
返回:
函数,该生成的函数会以数据下沉模式执行。

View File

@ -12,7 +12,7 @@ mindspore.nn.FractionalMaxPool3d
输入输出的数据格式可以是"NCDHW"。其中,"N"是批次大小,"C"是通道数,"D"是特征深度,"H"是特征高度,"W"是特征宽度。
参数:
- **kernel_size** (Union[float, tuple[int]]) - 指定池化核尺寸大小如果为整数则代表池化核的深、高和宽。如果为tuple其值必须包含三个整数值分别表示池化核的深、高和宽。
- **kernel_size** (Union[int, tuple[int]]) - 指定池化核尺寸大小如果为整数则代表池化核的深、高和宽。如果为tuple其值必须包含三个整数值分别表示池化核的深、高和宽。
- **output_size** (Union[int, tuple[int]]) - 目标输出大小。如果是整数则表示输出目标的深、高和宽。如果是tuple其值必须包含三个整数值分别表示目标输出的深、高和宽。默认值是 `None`
- **output_ratio** (Union[float, tuple[float]]) - 目标输出shape与输入shape的比率。通过输入shape和 `output_ratio` 确定输出shape。支持数据类型float16、float32、double数值介于0到1之间。默认值是 `None`
- **return_indices** (bool) - 如果为 `True` ,返回分数最大池化的最大值的的索引值。默认值是 `False`

View File

@ -11,11 +11,11 @@ mindspore.ops.broadcast_to
- 如果不相等,分以下三种情况:
- 情况一如果目标shape该维的值为-1则输出shape该维的值为对应输入shape该维的值。比如说输入shape为 :math:`(3, 3)` 目标shape为 :math:`(-1, 3)` 则输出shape为 :math:`(3, 3)`
- 情况一如果目标shape该维的值为-1则输出shape该维的值为对应输入shape该维的值。比如说输入shape为 :math:`(3, 3)` 目标shape为 :math:`(-1, 3)` 则输出shape为 :math:`(3, 3)`
- 情况二如果目标shape该维的值不为-1但是输入shape该维的值为1则输出shape该维的值为目标shape该维的值。比如说输入shape为 :math:`(1, 3)` 目标shape为 :math:`(8, 3)` 则输出shape为 :math:`(8, 3)`
- 情况二如果目标shape该维的值不为-1但是输入shape该维的值为1则输出shape该维的值为目标shape该维的值。比如说输入shape为 :math:`(1, 3)` 目标shape为 :math:`(8, 3)` 则输出shape为 :math:`(8, 3)`
- 情况三如果两个shape对应值不满足以上情况则说明不支持由输入shape广播到目标shape。
- 情况三如果两个shape对应值不满足以上情况则说明不支持由输入shape广播到目标shape。
至此输出shape后面m维就确定好了现在看一下前面 :math:`*` 维,有以下两种情况:

View File

@ -1,7 +1,7 @@
mindspore.ops.scalar_cast
==========================
.. py:function:: mindspore.ops.mindspore.ops.scalar_cast(input_x, input_y)
.. py:function:: mindspore.ops.scalar_cast(input_x, input_y)
将输入Scalar转换为其他类型。

View File

@ -6451,11 +6451,14 @@ class Tensor(Tensor_):
other (Union[Tensor, Number, bool]): The second input is a number or a bool when the first input is a tensor
or a tensor whose data type is number or bool.
rounding_mode (string, optional): Type of rounding applied to the result. Three types are defined as,
None: Default behavior. Equivalent to true division in Python or `true_divide` in NumPy.
`floor`: Rounds the results of the division down. Equivalent to floor division in Python
or `floor_divide` in NumPy.
`trunc`: Rounds the results of the division towards zero. Equivalent to C-style integer division.
Default: None.
- None: Default behavior. Equivalent to true division in Python or `true_divide` in NumPy.
- floor: Rounds the results of the division down. Equivalent to floor division in Python
or `floor_divide` in NumPy.
- trunc: Rounds the results of the division towards zero. Equivalent to C-style integer division.
Default: None.
Returns:
Tensor, the shape is the same as the one after broadcasting, and the data type is the one with higher

View File

@ -122,7 +122,7 @@ class MaxPool3d(Cell):
the max values are generated.
- **output** (Tensor) - Maxpooling result, with shape :math:`(N_{out}, C_{out}, D_{out}, H_{out}, W_{out})` or
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`. It has the same data type as `x`.
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`. It has the same data type as `x`.
- **argmax** (Tensor) - Index corresponding to the maximum value. Data type is int64.
Raises:
@ -385,7 +385,7 @@ class AvgPool3d(Cell):
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})` or
:math:`(C, D_{in}, H_{in}, W_{in})`.
:math:`(C, D_{in}, H_{in}, W_{in})`.
Currently support float16 and float32 data type.
Outputs:
@ -1111,7 +1111,7 @@ class FractionalMaxPool2d(Cell):
`output_size` can be a tuple, or a single H for H x H.
specifying the size (H, W) of the output tensor.
Default: None.
output_ratio (Union[float, tuple]): The target `output_ratio` is H x W.
output_ratio (Union[float, tuple[float]]): The target `output_ratio` is H x W.
`output_ratio` can be a tuple, or a single H for H x H.
Specifying the size of the output tensor by using a ratio of the input size.
Data type : float16, float32, double, and value is between (0, 1).
@ -1234,14 +1234,14 @@ class FractionalMaxPool3d(Cell):
D the feature depth, H is the feature height, and W is the feature width.
Args:
kernel_size (Union[float, tuple]): The target `kernel_size` is D x H x W.
kernel_size (Union[int, tuple[int]]): The target `kernel_size` is D x H x W.
`kernel_size` can be a tuple, or a single K for K x K x K.
specifying the window size (D, H, W) of the input tensor.
output_size (Union[int, tuple]): The target `output_size` is D x H x W.
output_size (Union[int, tuple[int]]): The target `output_size` is D x H x W.
`output_size` can be a tuple, or a single H for H x H x H.
Specifying the size (D, H, W) of the output tensor.
Default: None.
output_ratio (Union[float, tuple]): The target `output_ratio` is D x H x W.
output_ratio (Union[float, tuple[float]]): The target `output_ratio` is D x H x W.
`output_ratio` can be a tuple, or a single H for H x H x H.
Specifying the size of the output tensor by using a ratio of the input size.
Data type : float16, float32, double, and value is between (0, 1).

View File

@ -3503,12 +3503,12 @@ def broadcast_to(x, shape):
If the first :math:`*` dims of output shape does not have -1 in it, then fill the input
shape with ones until their length are the same, and then refer to
Case 2 mentioned above to calculate the output shape. With target shape :math:` (3, 1, 4, 1, 5, 9)`,
Case 2 mentioned above to calculate the output shape. With target shape :math:`(3, 1, 4, 1, 5, 9)`,
input shape :math:`(1, 5, 9)`, the filled input shape will be :math:`(1, 1, 1, 1, 5, 9)` and thus the
output shape is :math:` (3, 1, 4, 1, 5, 9)`.
output shape is :math:`(3, 1, 4, 1, 5, 9)`.
If the first :math:`*` dims of output shape have -1 in it, it implies this -1 is conrresponding to
a non-existing dim so they're not broadcastable. With target shape :math:` (3, -1, 4, 1, 5, 9)`,
a non-existing dim so they're not broadcastable. With target shape :math:`(3, -1, 4, 1, 5, 9)`,
input shape :math:`(1, 5, 9)`, instead of operating the dim-filling process first, it raises errors directly.
Args:

View File

@ -622,11 +622,14 @@ def div(input, other, rounding_mode=None):
y (Union[Tensor, Number, bool]): The second input is a number or
a bool when the first input is a tensor or a tensor whose data type is number or bool.
rounding_mode (str, optional): Type of rounding applied to the result. Three types are defined as,
None: Default behavior. Equivalent to true division in Python or `true_divide` in NumPy.
`floor`: Rounds the results of the division down. Equivalent to floor division in Python
or `floor_divide` in NumPy.
`trunc`: Rounds the results of the division towards zero. Equivalent to C-style integer division.
Default: None.
- None: Default behavior. Equivalent to true division in Python or `true_divide` in NumPy.
- floor: Rounds the results of the division down. Equivalent to floor division in Python
or `floor_divide` in NumPy.
- trunc: Rounds the results of the division towards zero. Equivalent to C-style integer division.
Default: None.
Returns:
Tensor, the shape is the same as the one after broadcasting,