!34093 add nn.adamax optimizer

Merge pull request !34093 from liutongtong9/add_adamax
This commit is contained in:
i-robot 2022-05-12 16:49:47 +00:00 committed by Gitee
commit 8df3aa1c7e
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
5 changed files with 428 additions and 6 deletions

View File

@ -0,0 +1,60 @@
.. py:class:: mindspore.nn.AdaMax(*args, **kwargs)
AdaMax算法是基于无穷范数的Adam的一种变体。
AdaMax算法详情请参阅论文 `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
公式如下:
.. math::
\begin{array}{ll} \\
m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\
v_{t+1} = \max(\beta_2 * v_{t}, \left| g \right|) \\
w = w - \frac{l}{1 - \beta_1^{t+1}} * \frac{m_{t+1}}{v_{t+1} + \epsilon}
\end{array}
:math:`m` 代表第一个动量矩阵,:math:`v` 代表第二个动量矩阵,:math:`g` 代表梯度 `gradients` :math:`\beta_1, \beta_2` 代表衰减速率 `beta1``beta2` :math:`t` 代表当前step:math:`beta_1^t` 代表 `beta1` 的t次方 :math:`\l` 代表学习率 `learning_rate` :math:`w` 代表 `params` :math:`\epsilon` 代表 `eps`
.. note::
.. include:: mindspore.nn.optim_note_weight_decay.rst
**参数:**
- **params** (Union[list[Parameter], list[dict]]) - 必须是 `Parameter` 组成的列表或字典组成的列表。当列表元素是字典时,字典的键可以是"params"、"lr"、"weight_decay"、"grad_centralization"和"order_params"
.. include:: mindspore.nn.optim_group_param.rst
.. include:: mindspore.nn.optim_group_lr.rst
.. include:: mindspore.nn.optim_group_dynamic_weight_decay.rst
.. include:: mindspore.nn.optim_group_gc.rst
.. include:: mindspore.nn.optim_group_order.rst
- **learning_rate** (Union[float, Tensor, iterable, LearningRateSchedule]): 默认值0.001。
.. include:: mindspore.nn.optim_arg_dynamic_lr.rst
- **beta1** (float) - 第一个动量矩阵的指数衰减率。参数范围0.0,1.0。默认值0.9。
- **beta2** (float) - 第二个动量矩阵的指数衰减率。参数范围0.0,1.0。默认值0.999。
- **eps** (float) - 加在分母上的值以确保数值稳定。必须大于0。默认值1e-8。
- **weight_decay** (Union[float, int, Cell]) - 权重衰减L2 penalty。默认值0.0。
.. include:: mindspore.nn.optim_arg_dynamic_wd.rst
.. include:: mindspore.nn.optim_arg_loss_scale.rst
**输入:**
- **gradients** (tuple[Tensor]) - `params` 的梯度形状shape`params` 相同。
**输出:**
Tensor[bool]值为True。
**异常:**
- **TypeError** - `learning_rate` 不是int、float、Tensor、iterable或LearningRateSchedule。
- **TypeError** - `parameters` 的元素不是Parameter或字典。
- **TypeError** - `beta1``beta2``eps``loss_scale` 不是float。
- **TypeError** - `weight_decay` 不是float或int。
- **ValueError** - `loss_scale``eps` 小于或等于0。
- **ValueError** - `beta1``beta2` 不在0.0,1.0)范围内。
- **ValueError** - `weight_decay` 小于0。

View File

@ -34,7 +34,8 @@ from .ada_grad import Adagrad
from .thor import thor
from .adafactor import AdaFactor
from .adasum import AdaSumByDeltaWeightWrapCell, AdaSumByGradWrapCell
from .adamax import AdaMax
__all__ = ['Optimizer', 'Momentum', 'LARS', 'Adam', 'AdamWeightDecay', 'LazyAdam', 'AdamOffload',
'Lamb', 'SGD', 'ASGD', 'Rprop', 'FTRL', 'RMSProp', 'ProximalAdagrad', 'Adagrad', 'thor', 'AdaFactor',
'AdaSumByDeltaWeightWrapCell', 'AdaSumByGradWrapCell']
'AdaSumByDeltaWeightWrapCell', 'AdaSumByGradWrapCell', 'AdaMax']

View File

@ -0,0 +1,211 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""adamax"""
from mindspore.common import dtype as mstype
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore._checkparam import Validator as validator
from mindspore.nn.optim.optimizer import Optimizer
from mindspore.nn.optim.optimizer import opt_init_args_register
from mindspore._checkparam import Rel
_ada_max_opt = C.MultitypeFuncGraph("ada_max_opt")
@_ada_max_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
"Tensor", "Tensor")
def _tensor_run_opt(opt, beta1, beta2, beta1_power, eps, learning_rate, weight, moment1, moment2, gradient):
success = True
success = F.depend(success, opt(weight, moment1, moment2, beta1_power, learning_rate, beta1, beta2, eps, gradient))
return success
def _check_param_value(beta1, beta2, eps, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
validator.check_positive_float(eps, "eps", prim_name)
class AdaMax(Optimizer):
r"""
Implements the AdaMax algorithm, a variant of Adaptive Movement Estimation (Adam) based on the infinity norm.
The AdaMax algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\
v_{t+1} = \max(\beta_2 * v_{t}, \left| g \right|) \\
w = w - \frac{l}{1 - \beta_1^{t+1}} * \frac{m_{t+1}}{v_{t+1} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector,
:math:`g` represents `gradients`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents the current step, :math:`beta_1^t` represent `beta1_power`,
:math:`\l` represents `learning_rate`, :math:`w` represents `params`,
:math:`\epsilon` represents `eps`.
Note:
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
parameters are grouped, each group can set `weight_decay`, if not, the `weight_decay` in optimizer will be
applied.
Args:
params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
`params` is a list of `dict`, the string "params", "lr", "weight_decay", "grad_centralization" and
"order_params" are the keys can be parsed.
- params: Required. Parameters in current group. The value must be a list of `Parameter`.
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in optimizer will be used. Fixed and dynamic learning rate are supported.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the optimizer will be used. It should be noted that weight
decay can be a constant value or a Cell. It is a Cell only when dynamic weight decay is applied. Dynamic
weight decay is similar to dynamic learning rate, users need to customize a weight decay schedule only
with global step as input, and during training, the optimizer calls the instance of WeightDecaySchedule
to get the weight decay value of current step.
- grad_centralization: Optional. Must be Boolean. If "grad_centralization" is in the keys, the set value
will be used. If not, the `grad_centralization` is False by default. This configuration only works on the
convolution layer.
- order_params: Optional. When parameters is grouped, this usually is used to maintain the order of
parameters that appeared in the network to improve performance. The value should be parameters whose
order will be followed in optimizer.
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
one group of `params`.
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: 0.001.
- float: The fixed learning rate value. Must be equal to or greater than 0.
- int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.
- Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied.
For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.
- Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
LearningRateSchedule with step as the input to get the learning rate of current step.
beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
Default: 0.9.
beta2 (float): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
Default: 0.999.
eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0. Default:
1e-8.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
- float: The fixed weight decay value. Must be equal to or greater than 0.
- int: The fixed weight decay value. Must be equal to or greater than 0. It will be converted to float.
- Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
the Cell with step as the input to get the weight decay value of current step.
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details.
Default: 1.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
Tensor[bool], the value is True.
Raises:
TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
TypeError: If element of `parameters` is neither Parameter nor dict.
TypeError: If `beta1`, `beta2`, `eps` or `loss_scale` is not a float.
TypeError: If `weight_decay` is neither float nor int.
ValueError: If `loss_scale` or `eps` is less than or equal to 0.
ValueError: If `beta1`, `beta2` is not in range (0.0, 1.0).
ValueError: If `weight_decay` is less than 0.
Supported Platforms:
``Ascend``
Examples:
>>> from mindspore import nn, Model
>>>
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.AdaMax(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
... {'params': no_conv_params, 'lr': 0.01},
... {'order_params': net.trainable_params()}]
>>> optim = nn.AdaMax(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01 and grad
>>> # centralization of True.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0 and grad
>>> # centralization of False.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
@opt_init_args_register
def __init__(self, params, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08,
weight_decay=0.0, loss_scale=1.0):
super(AdaMax, self).__init__(learning_rate, params, weight_decay, loss_scale)
_check_param_value(beta1, beta2, eps, self.cls_name)
self.beta1 = Tensor(beta1, mstype.float32)
self.beta2 = Tensor(beta2, mstype.float32)
self.beta1_power = Parameter(initializer(1, [1], mstype.float32), name="beta1_power")
self.eps = Tensor(eps, mstype.float32)
self.moment1 = self._parameters.clone(prefix="moment1", init='zeros')
self.moment2 = self._parameters.clone(prefix="moment2", init='zeros')
self.opt = P.ApplyAdaMax()
def construct(self, gradients):
gradients = self.flatten_gradients(gradients)
gradients = self.decay_weight(gradients)
gradients = self.gradients_centralization(gradients)
gradients = self.scale_grad(gradients)
lr = self.get_lr()
self.beta1_power *= self.beta1
if self.is_group_lr:
success = self.map_(F.partial(_ada_max_opt, self.opt, self.beta1, self.beta2, self.beta1_power, self.eps),
lr, self._parameters, self.moment1, self.moment2, gradients)
else:
success = self.map_(F.partial(_ada_max_opt, self.opt, self.beta1, self.beta2, self.beta1_power,
self.eps, lr), self._parameters, self.moment1, self.moment2, gradients)
return success

View File

@ -19,6 +19,7 @@ from mindspore import nn, Tensor
from mindspore.ops import operations as P
from mindspore.nn.optim import ASGD
from mindspore.nn.optim import Rprop
from mindspore.nn.optim import AdaMax
np.random.seed(1024)
fc1_weight = np.array([[0.72346634, 0.95608497, 0.4084163, 0.18627149,
@ -52,10 +53,10 @@ class NetWithLoss(nn.Cell):
"""
build net with loss
"""
def __init__(self, network):
def __init__(self, network, loss_fn):
super(NetWithLoss, self).__init__()
self.network = network
self.loss = nn.MSELoss(reduction='sum')
self.loss = loss_fn
def construct(self, x, label):
out = self.network(x)
@ -93,14 +94,13 @@ class FakeNet(nn.Cell):
m.bias.set_data(Tensor(fc2_bias))
def build_network(opt_config, is_group=False):
def build_network(opt_config, is_group=False, net=FakeNet(), loss_fn=nn.MSELoss(reduction='sum')):
"""
Construct training
"""
losses = []
net = FakeNet()
networkwithloss = NetWithLoss(net)
networkwithloss = NetWithLoss(net, loss_fn)
networkwithloss.set_train()
if is_group:
@ -108,6 +108,8 @@ def build_network(opt_config, is_group=False):
fc2_params = list(filter(lambda x: 'fc1' not in x.name, networkwithloss.trainable_params()))
if opt_config['name'] == 'ASGD':
params = [{'params': fc1_params, 'weight_decay': 0.01, 'lr': 0.001}, {'params': fc2_params, 'lr': 0.1}]
elif opt_config['name'] == 'adamax':
params = [{'params': fc1_params, 'lr': 0.0018}, {'params': fc2_params, 'lr': 0.0022}]
else:
params = [{'params': fc1_params, 'lr': 0.001}, {'params': fc2_params, 'lr': 0.1}]
else:
@ -121,6 +123,10 @@ def build_network(opt_config, is_group=False):
net_opt = Rprop(params, learning_rate=opt_config['lr'], etas=opt_config['etas'],
step_sizes=opt_config['step_sizes'], weight_decay=0.0)
elif opt_config['name'] == 'adamax':
net_opt = AdaMax(params, learning_rate=opt_config['lr'], beta1=opt_config['beta1'],
beta2=opt_config['beta2'], eps=opt_config['eps'], weight_decay=0.0)
trainonestepcell = mindspore.nn.TrainOneStepCell(networkwithloss, net_opt)
data, label = make_fake_data()
for i in range(20):
@ -168,6 +174,21 @@ loss_group_rprop = np.array([3.0124679e-01, 7.1360558e+01, 4.8910957e+01, 2.1730
2.4236647e+01, 3.9299741e+02, 3.5600668e+02, 1.4759110e+01,
7.2244568e+02, 8.1952783e+02, 9.8913864e+01, 1.1141744e+03], dtype=np.float32)
loss_default_adamax = np.array([1.0, 4.542382, 10.5303135, 18.87176, 29.475002,
42.2471, 57.09358, 73.917595, 92.62038, 113.10096,
135.25633, 158.9815, 184.16951, 210.71207, 238.49873,
267.41818, 297.35782, 328.20422, 359.84293, 392.15878], dtype=np.float32)
loss_not_default_adamax = np.array([1.0, 4.5040994, 9.420462, 14.951918, 20.390736,
25.111732, 28.57695, 30.347034, 30.098299, 27.647425,
22.994541, 16.402872, 8.979612, 2.7966619, 0.025522191,
1.9826386, 8.12521, 15.100327, 18.94126, 19.657328], dtype=np.float32)
loss_group_adamax = np.array([1.0, 4.537268, 10.415594, 18.463926, 28.51337,
40.394474, 53.936195, 68.9657, 85.307945, 102.78646,
121.22308, 140.4386, 160.25333, 180.48737, 200.96124,
221.49626, 241.91531, 262.0436, 281.70914, 300.7426], dtype=np.float32)
default_fc1_weight_asgd = np.array([[-0.9451941, -0.71258026, -1.2602371, -1.4823773,
-0.974408, -1.2709816, -1.4194703, -1.2137808],

View File

@ -0,0 +1,129 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
from mindspore import nn, Tensor
from optimizer_utils import build_network, \
loss_default_adamax, loss_not_default_adamax, loss_group_adamax
w1 = np.array([[0.03909272, 0.08893055, -0.259909, -0.459185,
-0.0195536, 0.12977135, -0.62942827, -0.53132117],
[0.1542052, 0.6513571, -0.06453168, 0.44788414,
-0.3775454, 0.6520292, 0.444174, -0.59306043],
[0.2712369, 0.20890862, 0.6859066, 0.6629662,
0.4724893, -0.34384444, -0.16007674, 0.21797538],
[-0.3865972, 0.26727962, 0.23178828, -0.24629539,
-0.68038213, -0.31262863, 0.10493469, -0.28973007]]).astype("float32")
b1 = np.array([0., 0., 0., 0.]).astype("float32")
w2 = np.array([[-0.6079024, -1.005364, 0.59004724, 0.7289244]]).astype("float32")
b2 = np.array([0.]).astype("float32")
class Net(nn.Cell):
"""
build a 2-layers net to test adamax optimizer
"""
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Dense(8, 4, weight_init=Tensor(w1), bias_init=Tensor(b1))
self.fc2 = nn.Dense(4, 1, weight_init=Tensor(w2), bias_init=Tensor(b2))
self.relu = nn.ReLU()
def construct(self, x):
x = self.relu(self.fc1(x))
return self.fc2(x)
def test_default_adamax_pynative():
"""
Feature: Test adamax optimizer
Description: Test adamax in Pynative mode with default parameter
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.001, "beta1": 0.9, "beta2": 0.999, "eps": 1e-07,
'weight_decay': 0.0}
loss = build_network(config, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_default_adamax, loss, atol=1.e-5)
def test_default_adamax_graph():
"""
Feature: Test adamax optimizer
Description: Test adamax in Graph mode with default parameter
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.001, "beta1": 0.9, "beta2": 0.999, "eps": 1e-07,
'weight_decay': 0.0}
loss = build_network(config, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_default_adamax, loss, atol=1.e-5)
def test_no_default_adamax_pynative():
"""
Feature: Test adamax optimizer
Description: Test adamax in Pynative mode with another set of parameter
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.01, "beta1": 0.9, "beta2": 0.98, "eps": 1e-06,
'weight_decay': 0.0}
loss = build_network(config, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_not_default_adamax, loss, atol=1.e-5)
def test_no_default_adamax_graph():
"""
Feature: Test adamax optimizer
Description: Test adamax in Graph mode with another set of parameter
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.01, "beta1": 0.9, "beta2": 0.98, "eps": 1e-06,
'weight_decay': 0.0}
loss = build_network(config, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_not_default_adamax, loss, atol=1.e-5)
def test_default_adamax_group_pynative():
"""
Feature: Test adamax optimizer
Description: Test adamax in Pynative mode with parameter grouping
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.002, "beta1": 0.9, "beta2": 0.999, "eps": 1e-08,
'weight_decay': 0.0}
loss = build_network(config, is_group=True, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_group_adamax, loss, atol=1.e-5)
def test_default_adamax_group_graph():
"""
Feature: Test adamax optimizer
Description: Test adamax in Graph mode with parameter grouping
Expectation: Loss values and parameters conform to preset values.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
config = {'name': 'adamax', 'lr': 0.002, "beta1": 0.9, "beta2": 0.999, "eps": 1e-08,
'weight_decay': 0.0}
loss = build_network(config, is_group=True, net=Net(), loss_fn=nn.MSELoss(reduction='mean'))
assert np.allclose(loss_group_adamax, loss, atol=1.e-5)