!45045 fix roll and lppool docs
Merge pull request !45045 from 冯一航/code_docs_fix_roll_lppool_docs
This commit is contained in:
commit
8be2b5275a
|
@ -13,7 +13,7 @@ mindspore.nn.LPPool1d
|
|||
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
|
||||
|
||||
参数:
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,不能为0,
|
||||
|
||||
- 如果 p = 1,得到的结果为池化核内元素之和(与平均池化成比例);
|
||||
- 如果 p = :math:`\infty`,得到的结果为最大池化的结果。
|
||||
|
|
|
@ -13,7 +13,7 @@ mindspore.nn.LPPool2d
|
|||
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
|
||||
|
||||
参数:
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,不能为0,
|
||||
|
||||
- 如果 p = 1,得到的结果为池化核内元素之和(与平均池化成比例);
|
||||
- 如果 p = :math:`\infty`,得到的结果为最大池化的结果。
|
||||
|
|
|
@ -14,7 +14,7 @@ mindspore.ops.lp_pool1d
|
|||
|
||||
参数:
|
||||
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 或 :math:`(C, L_{in})` 的Tensor。
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,不能为0,
|
||||
|
||||
- 如果 p = 1,得到的结果为池化核内元素之和(与平均池化成比例),
|
||||
- 如果 p = :math:`\infty`,得到的结果为最大池化的结果。
|
||||
|
|
|
@ -14,7 +14,7 @@ mindspore.ops.lp_pool2d
|
|||
|
||||
参数:
|
||||
- **x** (Tensor) - shape为 :math:`(N, C, H_{in}, W_{in})` 的Tensor。
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,
|
||||
- **norm_type** (Union[int, float]) - 标准化类型,代表公式里的p,不能为0,
|
||||
|
||||
- 如果 p = 1,得到的结果为池化核内元素之和(与平均池化成比例),
|
||||
- 如果 p = :math:`\infty`,得到的结果为最大池化的结果。
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
mindspore.ops.roll
|
||||
===================
|
||||
|
||||
.. py:function:: mindspore.ops.roll(x, shifts, dims)
|
||||
.. py:function:: mindspore.ops.roll(x, shifts, dims=None)
|
||||
|
||||
沿轴移动Tensor的元素。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入Tensor。
|
||||
- **shifts** (Union[list(int), tuple(int), int]) - 指定元素移动方式,如果为正数,则元素沿指定维度正向移动(朝向较大的索引)的位置数。负偏移将向相反的方向滚动元素。
|
||||
- **dims** (Union[list(int), tuple(int), int]) - 指定需移动维度的轴。
|
||||
- **dims** (Union[list(int), tuple(int), int], optional) - 指定需移动维度的轴。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,shape和数据类型与输入 `x` 相同。
|
||||
|
|
|
@ -94,7 +94,7 @@ class LPPool1d(Cell):
|
|||
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
|
||||
|
||||
Args:
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula,
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula, can not be 0.
|
||||
|
||||
- if p = 1, one gets Sum Pooling (which is proportional to Average Pooling),
|
||||
- if p = :math:`\infty`, one gets Max Pooling.
|
||||
|
@ -165,7 +165,7 @@ class LPPool2d(Cell):
|
|||
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
|
||||
|
||||
Args:
|
||||
norm_type(Union[int, float]) - Type of normalization, represents p in the formula,
|
||||
norm_type(Union[int, float]) - Type of normalization, represents p in the formula, can not be 0.
|
||||
|
||||
- if p = 1, one gets Sum Pooling (which is proportional to Average Pooling),
|
||||
- if p = :math:`\infty`, one gets Max Pooling.
|
||||
|
|
|
@ -5687,7 +5687,8 @@ def roll(x, shifts, dims=None):
|
|||
shifts (Union[list(int), tuple(int), int]): Specifies the number of places by which elements are shifted
|
||||
positively (towards larger indices) along the specified dimension. Negative shifts will roll the elements
|
||||
in the opposite direction.
|
||||
dims (Union[list(int), tuple(int), int]): Specifies the dimension indexes of shape to be rolled.
|
||||
dims (Union[list(int), tuple(int), int], optional): Specifies the dimension indexes of shape to be rolled.
|
||||
Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same shape and type as `x`.
|
||||
|
|
|
@ -4054,7 +4054,7 @@ def lp_pool1d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
|
|||
|
||||
Args:
|
||||
x (Tensor): Tensor of shape :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula,
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula, can not be 0,
|
||||
|
||||
- if p = 1, one gets Sum Pooling (which is proportional to Average Pooling),
|
||||
- if p = :math:`\infty`, one gets Max Pooling.
|
||||
|
@ -4133,7 +4133,7 @@ def lp_pool2d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
|
|||
|
||||
Args:
|
||||
x (Tensor): Tensor of shape :math:`(N, C, H_{in}, W_{in})`.
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula,
|
||||
norm_type (Union[int, float]): Type of normalization, represents p in the formula, can not be 0,
|
||||
|
||||
- if p = 1, one gets Sum Pooling (which is proportional to Average Pooling),
|
||||
- if p = :math:`\infty`, one gets Max Pooling.
|
||||
|
|
Loading…
Reference in New Issue