!45471 [MS][OP]add some primitive chinese docs
Merge pull request !45471 from mengyuanli/code_docs_export_primitive_2
This commit is contained in:
commit
8bb913a613
|
@ -230,6 +230,9 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.Bincount
|
||||
mindspore.ops.Bucketize
|
||||
mindspore.ops.Cauchy
|
||||
mindspore.ops.Cholesky
|
||||
mindspore.ops.CholeskyInverse
|
||||
mindspore.ops.CholeskySolve
|
||||
mindspore.ops.Cross
|
||||
|
||||
逐元素运算
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.ops.Cholesky
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.Cholesky(upper=False)
|
||||
|
||||
计算单个或成批对称正定矩阵的Cholesky分解。
|
||||
|
||||
更多参考详见 :func:`mindspore.ops.cholesky`。
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.ops.CholeskyInverse
|
||||
==============================
|
||||
|
||||
.. py:class:: mindspore.ops.CholeskyInverse(upper=False)
|
||||
|
||||
使用Cholesky矩阵分解返回正定矩阵的逆矩阵。
|
||||
|
||||
更多参考详见 :func:`mindspore.ops.cholesky_inverse`。
|
|
@ -0,0 +1,37 @@
|
|||
mindspore.ops.CholeskySolve
|
||||
===========================
|
||||
|
||||
.. py:class:: mindspore.ops.CholeskySolve(upper=False)
|
||||
|
||||
给定Cholesky因子 `u` ,求解具有正定矩阵的线性方程组,结果表示为 `c` 。
|
||||
|
||||
如果 `upper` 是True, `u` 是上三角形矩阵,可以通过下面公式得到 `c` :
|
||||
|
||||
.. math::
|
||||
c = (u^{T}u)^{{-1}}b
|
||||
|
||||
如果 `upper` 是False, `u` 是下三角形矩阵,可以通过下面公式得到 `c` :
|
||||
|
||||
.. math::
|
||||
c = (uu^{T})^{{-1}}b
|
||||
|
||||
参数:
|
||||
- **upper** (bool,可选) - 将Cholesky因子视为下三角矩阵或上三角矩阵的标志。若为True,视为上三角矩阵,反之则为下三角。默认值:False。
|
||||
|
||||
输入:
|
||||
- **x1** (Tensor) - 表示二维或三维矩阵的Tensor。Shape为: :math:`(*, N, M)` ,数据类型为float32或float64。
|
||||
- **x2** (Tensor) - 表示由2D或3D正方形矩阵组成上三角形或下三角形乔列斯基因子的Tensor。Shape为: :math:`(*, N, N)` ,数据类型为float32或float64。
|
||||
`x1` 和 `x2` 必须具有相同的类型。
|
||||
|
||||
输出:
|
||||
Tensor,具有与 `x1` 相同的shape和数据类型。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `upper` 的数据类型不是bool。
|
||||
- **TypeError** - 如果 `x1` 和 `x2` 的dtype不是以下之一:float64,float32。
|
||||
- **TypeError** - 如果 `x1` 不是Tensor。
|
||||
- **TypeError** - 如果 `x2` 不是Tensor。
|
||||
- **ValueError** - 如果 `x1` 和 `x2` 具有不同的批大小。
|
||||
- **ValueError** - 如果 `x1` 和 `x2` 具有不同的行数。
|
||||
- **ValueError** - 如果 `x1` 不是2维或3维矩阵。
|
||||
- **ValueError** - 如果 `x2` 不是2维或3维方阵。
|
|
@ -230,6 +230,9 @@ Mathematical Operators
|
|||
mindspore.ops.Bincount
|
||||
mindspore.ops.Bucketize
|
||||
mindspore.ops.Cauchy
|
||||
mindspore.ops.Cholesky
|
||||
mindspore.ops.CholeskyInverse
|
||||
mindspore.ops.CholeskySolve
|
||||
mindspore.ops.Cross
|
||||
|
||||
Element-wise Operator
|
||||
|
|
|
@ -6766,7 +6766,7 @@ def cholesky_inverse(input_x, upper=False):
|
|||
ValueError: If the dimension of `input_x` is not equal to 2.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([[2,0,0], [4,1,0], [-1,1,2]]), mindspore.float32)
|
||||
|
|
|
@ -6422,32 +6422,7 @@ class CholeskyInverse(Primitive):
|
|||
"""
|
||||
Returns the inverse of the positive definite matrix using cholesky matrix factorization.
|
||||
|
||||
If upper is False, u is a lower triangular such that the output tensor is
|
||||
|
||||
.. math::
|
||||
inv = (uu^{T})^{{-1}}
|
||||
|
||||
If upper is True, u is an upper triangular such that the output tensor is
|
||||
|
||||
.. math::
|
||||
inv = (u^{T}u)^{{-1}}
|
||||
|
||||
Note:
|
||||
The input must be either an upper triangular matrix or a lower triangular matrix.
|
||||
|
||||
Args:
|
||||
upper(bool): Whether to return a lower or upper triangular matrix. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The input tensor. types: float32, float64.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as x.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` is not a Tensor.
|
||||
TypeError: If dtype of `x` is not one of: float32, float64.
|
||||
ValueError: If the dimension of `x` is not equal to 2.
|
||||
Refer to :func::`mindspore.ops.cholesky_inverse` for more detail.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -6793,33 +6768,7 @@ class Cholesky(Primitive):
|
|||
Computes the Cholesky decomposition of a symmetric positive-definite matrix `A`
|
||||
or for batches of symmetric positive-definite matrices.
|
||||
|
||||
If `upper` is `True`, the returned matrix `U` is upper-triangular, and the decomposition has the form:
|
||||
|
||||
.. math::
|
||||
A = U^TU
|
||||
|
||||
If `upper` is `False`, the returned matrix `L` is lower-triangular, and the decomposition has the form:
|
||||
|
||||
.. math::
|
||||
A = LL^T
|
||||
|
||||
Args:
|
||||
upper (bool): Flag that indicates whether to return a upper or lower triangular matrix.
|
||||
Default: False.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(*, N, N)`, where :math:`*` is zero or more batch dimensions
|
||||
consisting of symmetric positive-definite matrices, with float32 or float64 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and data type as `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `upper` is not a bool.
|
||||
TypeError: If dtype of `input_x` is not one of: float64, float32.
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
ValueError: If `input_x` is not batch square.
|
||||
ValueError: If `input_x` is not symmetric positive definite.
|
||||
Refer to :func::`mindspore.ops.cholesky` for more detail.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -6904,7 +6853,7 @@ class CholeskySolve(Primitive):
|
|||
c = (uu^{T})^{{-1}}b
|
||||
|
||||
Args:
|
||||
upper (bool): Flag which indicates whether to consider the Cholesky factor
|
||||
upper (bool, optional): Flag which indicates whether to consider the Cholesky factor
|
||||
as a lower or upper triangular matrix. Default: False.
|
||||
|
||||
Inputs:
|
||||
|
|
Loading…
Reference in New Issue