!13040 Fix resnet pretrain model bug.
From: @linqingke Reviewed-by: @wuxuejian,@c_34 Signed-off-by: @wuxuejian
This commit is contained in:
commit
8b8c2fb3a8
|
@ -20,7 +20,7 @@ from easydict import EasyDict as ed
|
|||
config = ed({
|
||||
"img_width": 1280,
|
||||
"img_height": 768,
|
||||
"keep_ratio": False,
|
||||
"keep_ratio": True,
|
||||
"flip_ratio": 0.5,
|
||||
"expand_ratio": 1.0,
|
||||
|
||||
|
@ -112,17 +112,17 @@ config = ed({
|
|||
"rpn_head_weight": 1.0,
|
||||
|
||||
# LR
|
||||
"base_lr": 0.02,
|
||||
"base_lr": 0.04,
|
||||
"warmup_step": 500,
|
||||
"warmup_ratio": 1/3.0,
|
||||
"warmup_ratio": 1/16.0,
|
||||
"sgd_step": [8, 11],
|
||||
"sgd_momentum": 0.9,
|
||||
|
||||
# train
|
||||
"batch_size": 2,
|
||||
"loss_scale": 1,
|
||||
"loss_scale": 256,
|
||||
"momentum": 0.91,
|
||||
"weight_decay": 1e-4,
|
||||
"weight_decay": 1e-5,
|
||||
"epoch_size": 12,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
|
|
|
@ -164,16 +164,43 @@ def rescale_column(img, img_shape, gt_bboxes, gt_label, gt_num):
|
|||
"""rescale operation for image"""
|
||||
img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
|
||||
if img_data.shape[0] > config.img_height:
|
||||
img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_width), return_scale=True)
|
||||
scale_factor = scale_factor * scale_factor2
|
||||
img_shape = np.append(img_shape, scale_factor)
|
||||
img_shape = np.asarray(img_shape, dtype=np.float32)
|
||||
img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
|
||||
scale_factor = scale_factor*scale_factor2
|
||||
|
||||
gt_bboxes = gt_bboxes * scale_factor
|
||||
gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_data.shape[1] - 1)
|
||||
gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_data.shape[0] - 1)
|
||||
|
||||
gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1)
|
||||
gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1)
|
||||
pad_h = config.img_height - img_data.shape[0]
|
||||
pad_w = config.img_width - img_data.shape[1]
|
||||
assert ((pad_h >= 0) and (pad_w >= 0))
|
||||
|
||||
return (img_data, img_shape, gt_bboxes, gt_label, gt_num)
|
||||
pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
|
||||
pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data
|
||||
|
||||
img_shape = (config.img_height, config.img_width, 1.0)
|
||||
img_shape = np.asarray(img_shape, dtype=np.float32)
|
||||
|
||||
return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num)
|
||||
|
||||
def rescale_column_test(img, img_shape, gt_bboxes, gt_label, gt_num):
|
||||
"""rescale operation for image of eval"""
|
||||
img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
|
||||
if img_data.shape[0] > config.img_height:
|
||||
img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
|
||||
scale_factor = scale_factor*scale_factor2
|
||||
|
||||
pad_h = config.img_height - img_data.shape[0]
|
||||
pad_w = config.img_width - img_data.shape[1]
|
||||
assert ((pad_h >= 0) and (pad_w >= 0))
|
||||
|
||||
pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
|
||||
pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data
|
||||
|
||||
img_shape = np.append(img_shape, (scale_factor, scale_factor))
|
||||
img_shape = np.asarray(img_shape, dtype=np.float32)
|
||||
|
||||
return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num)
|
||||
|
||||
|
||||
def resize_column(img, img_shape, gt_bboxes, gt_label, gt_num):
|
||||
|
@ -274,7 +301,7 @@ def preprocess_fn(image, box, is_training):
|
|||
input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert
|
||||
|
||||
if config.keep_ratio:
|
||||
input_data = rescale_column(*input_data)
|
||||
input_data = rescale_column_test(*input_data)
|
||||
else:
|
||||
input_data = resize_column_test(*input_data)
|
||||
input_data = imnormalize_column(*input_data)
|
||||
|
|
|
@ -28,7 +28,7 @@ def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps):
|
|||
def dynamic_lr(config, steps_per_epoch):
|
||||
"""dynamic learning rate generator"""
|
||||
base_lr = config.base_lr
|
||||
total_steps = steps_per_epoch * config.epoch_size
|
||||
total_steps = steps_per_epoch * (config.epoch_size + 1)
|
||||
warmup_steps = int(config.warmup_step)
|
||||
lr = []
|
||||
for i in range(total_steps):
|
||||
|
|
Loading…
Reference in New Issue