!20031 fix numpy docstrings
Merge pull request !20031 from wangrao124/code_docs_numpy_0712
This commit is contained in:
commit
8b56ccadeb
|
@ -1116,26 +1116,26 @@ def diagonal(a, offset=0, axis1=0, axis2=1):
|
|||
|
||||
Examples:
|
||||
>>> import mindspore.numpy as np
|
||||
>>> a = np.arange(4).reshape(2,2)
|
||||
>>> a = np.arange(4).reshape(2,2).astype(np.float32)
|
||||
>>> print(a)
|
||||
[[0 1]
|
||||
[2 3]]
|
||||
[[0. 1.]
|
||||
[2. 3.]]
|
||||
>>> output = np.diagonal(a)
|
||||
>>> print(output)
|
||||
[0 3]
|
||||
[0. 3.]
|
||||
>>> output = np.diagonal(a, 1)
|
||||
>>> print(output)
|
||||
[1]
|
||||
>>> a = np.arange(8).reshape(2, 2, 2)
|
||||
[1.]
|
||||
>>> a = np.arange(8).reshape(2, 2, 2).astype(np.float32)
|
||||
>>> print(a)
|
||||
[[[0 1]
|
||||
[2 3]]
|
||||
[[4 5]
|
||||
[6 7]]]
|
||||
[[[0. 1.]
|
||||
[2. 3.]]
|
||||
[[4. 5.]
|
||||
[6. 7.]]]
|
||||
>>> output = np.diagonal(a, 0, 0, 1)
|
||||
>>> print(output)
|
||||
[[0 6]
|
||||
[1 7]]
|
||||
[[0. 6.]
|
||||
[1. 7.]]
|
||||
"""
|
||||
return a.diagonal(offset=offset, axis1=axis1, axis2=axis2)
|
||||
|
||||
|
|
|
@ -1653,16 +1653,16 @@ def flip(m, axis=None):
|
|||
>>> A = np.arange(8.0).reshape((2,2,2))
|
||||
>>> output = np.flip(A)
|
||||
>>> print(output)
|
||||
[[[7, 6],
|
||||
[5, 4]],
|
||||
[[3, 2],
|
||||
[1, 0]]]
|
||||
[[[7. 6]
|
||||
[5. 4]]
|
||||
[[3. 2]
|
||||
[1. 0]]]
|
||||
>>> output = np.flip(A, (0, 2))
|
||||
>>> print(output)
|
||||
[[[5, 4],
|
||||
[7, 6]],
|
||||
[[1, 0],
|
||||
[3, 2]]]
|
||||
[[[5. 4]
|
||||
[7. 6]]
|
||||
[[1. 0]
|
||||
[3. 2]]]
|
||||
"""
|
||||
_check_input_tensor(m)
|
||||
ndim = F.rank(m)
|
||||
|
@ -1707,10 +1707,10 @@ def flipud(m):
|
|||
>>> A = np.arange(8.0).reshape((2,2,2))
|
||||
>>> output = np.flipud(A)
|
||||
>>> print(output)
|
||||
[[[4., 5.],
|
||||
[6., 7.]],
|
||||
[[0., 1.],
|
||||
[2., 3.]]]
|
||||
[[[4. 5.]
|
||||
[6. 7.]]
|
||||
[[0. 1.]
|
||||
[2. 3.]]]
|
||||
"""
|
||||
return flip(m, 0)
|
||||
|
||||
|
@ -1740,10 +1740,10 @@ def fliplr(m):
|
|||
>>> A = np.arange(8.0).reshape((2,2,2))
|
||||
>>> output = np.fliplr(A)
|
||||
>>> print(output)
|
||||
[[[2., 3.],
|
||||
[0., 1.]],
|
||||
[[6., 7.],
|
||||
[4., 5.]]]
|
||||
[[[2. 3.]
|
||||
[0. 1.]]
|
||||
[[6. 7.]
|
||||
[4. 5.]]]
|
||||
"""
|
||||
return flip(m, 1)
|
||||
|
||||
|
|
|
@ -2213,7 +2213,7 @@ def convolve(a, v, mode='full'):
|
|||
>>> import mindspore.numpy as np
|
||||
>>> output = np.convolve([1., 2., 3., 4., 5.], [2., 3.], mode="valid")
|
||||
>>> print(output)
|
||||
[ 3. 6. 9. 12.]
|
||||
[ 7. 12. 17. 22.]
|
||||
"""
|
||||
if not isinstance(a, Tensor):
|
||||
a = asarray_const(a)
|
||||
|
@ -2926,6 +2926,7 @@ def cross(a, b, axisa=- 1, axisb=- 1, axisc=- 1, axis=None):
|
|||
[[-3 6 -3]
|
||||
[ 3 -6 3]]
|
||||
>>> output = np.cross(x, y, axisc=0)
|
||||
>>> print(output)
|
||||
[[-3 3]
|
||||
[ 6 -6]
|
||||
[-3 3]]
|
||||
|
@ -3785,7 +3786,7 @@ def arctan2(x1, x2, dtype=None):
|
|||
if both `x1` and `x2` are scalars.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.numpy as np
|
||||
|
@ -4430,6 +4431,7 @@ def sign(x, dtype=None):
|
|||
Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are
|
||||
not supported.
|
||||
Complex inputs are not supported now.
|
||||
On Ascend, integer inputs are not supported.
|
||||
|
||||
Args:
|
||||
x (Union[int, float, list, tuple, Tensor]): Input values.
|
||||
|
@ -4683,14 +4685,14 @@ def histogram(a, bins=10, range=None, weights=None, density=False): # pylint: di
|
|||
Examples:
|
||||
>>> from mindspore import numpy as np
|
||||
>>> print(np.histogram([1, 2, 1], bins=[0, 1, 2, 3]))
|
||||
(Tensor(shape=[3], dtype=Float32, value= [0, 2, 1]),
|
||||
(Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 2.00000000e+00, 1.00000000e+00]),
|
||||
Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 3]))
|
||||
>>> print(np.histogram(np.arange(4), bins=np.arange(5), density=True))
|
||||
(Tensor(shape=[4], dtype=Float32, value=
|
||||
[ 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01]),
|
||||
Tensor(shape=[5], dtype=Int32, value= [0, 1, 2, 3, 4]))
|
||||
>>> print(np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]))
|
||||
(Tensor(shape=[3], dtype=Float32, value= [1, 4, 1]),
|
||||
(Tensor(shape=[3], dtype=Float32, value= [ 1.00000000e+00, 4.00000000e+00, 1.00000000e+00]),
|
||||
Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 3]))
|
||||
"""
|
||||
a = _to_tensor(a)
|
||||
|
@ -4779,14 +4781,13 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False): # pyl
|
|||
[12 13 14]]
|
||||
>>> print(np.histogramdd(sample, bins=(2, 3, 4)))
|
||||
(Tensor(shape=[2, 3, 4], dtype=Float32, value=
|
||||
[[[1, 1, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0]],
|
||||
[[0, 0, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 2]]]),
|
||||
[Tensor(shape=[3], dtype=Float32, value=
|
||||
[ 0.00000000e+00, 6.00000000e+00, 1.20000000e+01]),
|
||||
[[[ 1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]],
|
||||
[[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
|
||||
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.00000000e+00]]]),
|
||||
[Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 6.00000000e+00, 1.20000000e+01]),
|
||||
Tensor(shape=[4], dtype=Float32, value=
|
||||
[ 1.00000000e+00, 5.00000000e+00, 9.00000000e+00, 1.30000000e+01]),
|
||||
Tensor(shape=[5], dtype=Float32, value=
|
||||
|
@ -4900,17 +4901,13 @@ def histogram2d(x, y, bins=10, range=None, weights=None, density=False): # pylin
|
|||
>>> from mindspore import numpy as np
|
||||
>>> x = np.arange(5)
|
||||
>>> y = np.arange(2, 7)
|
||||
>>> print(np.histogram2d(x, y, bins=(4, 6)))
|
||||
(Tensor(shape=[4, 6], dtype=Float32, value=
|
||||
[[1, 0, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 0, 0, 1, 0, 0]
|
||||
[0, 0, 0, 0, 1, 1]]),
|
||||
Tensor(shape=[5], dtype=Float32, value=
|
||||
[ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00, 3.00000000e+00, 4.00000000e+00]),
|
||||
Tensor(shape=[7], dtype=Float32, value=
|
||||
[ 2.00000000e+00, 2.66666675e+00, 3.33333349e+00, 4.00000000e+00, 4.66666698e+00,
|
||||
5.33333349e+00, 6.00000000e+00]))
|
||||
>>> print(np.histogram2d(x, y, bins=(2, 3)))
|
||||
(Tensor(shape=[2, 3], dtype=Float32, value=
|
||||
[[ 2.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[ 0.00000000e+00, 1.00000000e+00, 2.00000000e+00]]),
|
||||
Tensor(shape=[3], dtype=Float32, value= [ 0.00000000e+00, 2.00000000e+00, 4.00000000e+00]),
|
||||
Tensor(shape=[4], dtype=Float32, value=
|
||||
[ 2.00000000e+00, 3.33333349e+00, 4.66666698e+00, 6.00000000e+00]))
|
||||
"""
|
||||
count, bin_edges = histogramdd((x, y), bins=bins, range=range, weights=weights, density=density)
|
||||
return count, bin_edges[0], bin_edges[1]
|
||||
|
@ -5367,7 +5364,7 @@ def cumprod(a, axis=None, dtype=None):
|
|||
ValueError: If axis is out of range.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.numpy as np
|
||||
|
|
Loading…
Reference in New Issue