!5901 fix network issue

Merge pull request !5901 from panfengfeng/fix_network_issue
This commit is contained in:
mindspore-ci-bot 2020-09-09 14:37:29 +08:00 committed by Gitee
commit 8a71db07c2
9 changed files with 144 additions and 164 deletions

View File

@ -1,83 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import mindspore.nn as nn
import mindspore.ops.operations as P
class ShuffleV2Block(nn.Cell):
def __init__(self, inp, oup, mid_channels, *, ksize, stride):
super(ShuffleV2Block, self).__init__()
self.stride = stride
##assert stride in [1, 2]
self.mid_channels = mid_channels
self.ksize = ksize
pad = ksize // 2
self.pad = pad
self.inp = inp
outputs = oup - inp
branch_main = [
# pw
nn.Conv2d(in_channels=inp, out_channels=mid_channels, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
nn.ReLU(),
# dw
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=ksize, stride=stride,
pad_mode='pad', padding=pad, group=mid_channels, has_bias=False),
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
# pw-linear
nn.Conv2d(in_channels=mid_channels, out_channels=outputs, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=outputs, momentum=0.9),
nn.ReLU(),
]
self.branch_main = nn.SequentialCell(branch_main)
if stride == 2:
branch_proj = [
# dw
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=ksize, stride=stride,
pad_mode='pad', padding=pad, group=inp, has_bias=False),
nn.BatchNorm2d(num_features=inp, momentum=0.9),
# pw-linear
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=inp, momentum=0.9),
nn.ReLU(),
]
self.branch_proj = nn.SequentialCell(branch_proj)
else:
self.branch_proj = None
def construct(self, old_x):
if self.stride == 1:
x_proj, x = self.channel_shuffle(old_x)
return P.Concat(1)((x_proj, self.branch_main(x)))
if self.stride == 2:
x_proj = old_x
x = old_x
return P.Concat(1)((self.branch_proj(x_proj), self.branch_main(x)))
return None
def channel_shuffle(self, x):
batchsize, num_channels, height, width = P.Shape()(x)
##assert (num_channels % 4 == 0)
x = P.Reshape()(x, (batchsize * num_channels // 2, 2, height * width,))
x = P.Transpose()(x, (1, 0, 2,))
x = P.Reshape()(x, (2, -1, num_channels // 2, height, width,))
return x[0], x[1]

View File

@ -23,8 +23,8 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import config_gpu as cfg
from src.dataset import create_dataset
from network import ShuffleNetV2
from src.shufflenetv2 import ShuffleNetV2
from src.CrossEntropySmooth import CrossEntropySmooth
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='image classification evaluation')
@ -43,8 +43,8 @@ if __name__ == '__main__':
load_param_into_net(net, ckpt)
net.set_train(False)
dataset = create_dataset(args_opt.dataset_path, False, 0, 1)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False,
smooth_factor=0.1, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction='mean',
smooth_factor=0.1, num_classes=cfg.num_classes)
eval_metrics = {'Loss': nn.Loss(),
'Top1-Acc': nn.Top1CategoricalAccuracy(),
'Top5-Acc': nn.Top5CategoricalAccuracy()}

View File

@ -13,10 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -lt 3 ]
if [ $# != 3 ] && [ $# != 4 ]
then
echo "Usage: \
sh run_distribute_train_for_gpu.sh [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] \
echo "Usage:
sh run_distribute_train_for_gpu.sh [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
"
exit 1
fi
@ -48,10 +48,15 @@ cd ../train || exit
export CUDA_VISIBLE_DEVICES="$2"
if [ $1 -gt 1 ]
if [ $# == 3 ]
then
mpirun -n $1 --allow-run-as-root \
python ${BASEPATH}/../train.py --platform='GPU' --is_distributed=True --dataset_path=$3 > train.log 2>&1 &
else
python ${BASEPATH}/../train.py --platform='GPU' --dataset_path=$3 > train.log 2>&1 &
fi
if [ $# == 4 ]
then
mpirun -n $1 --allow-run-as-root \
python ${BASEPATH}/../train.py --platform='GPU' --is_distributed=True --dataset_path=$3 --resume=$4 > train.log 2>&1 &
fi

View File

@ -13,10 +13,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -lt 1 ]
if [ $# != 1 ] && [ $# != 2 ]
then
echo "Usage: \
sh run_standalone_train_for_gpu.sh [DATASET_PATH] \
echo "Usage:
sh run_standalone_train_for_gpu.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
"
exit 1
fi
@ -37,4 +37,12 @@ fi
mkdir ../train
cd ../train || exit
python ${BASEPATH}/../train.py --platform='GPU' --dataset_path=$1 > train.log 2>&1 &
if [ $# == 1 ]
then
python ${BASEPATH}/../train.py --platform='GPU' --dataset_path=$1 > train.log 2>&1 &
fi
if [ $# == 2 ]
then
python ${BASEPATH}/../train.py --platform='GPU' --dataset_path=$1 --resume=$2 > train.log 2>&1 &
fi

View File

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network"""
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import functional as F
from mindspore.ops import operations as P
class CrossEntropySmooth(_Loss):
"""CrossEntropy"""
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
super(CrossEntropySmooth, self).__init__()
self.onehot = P.OneHot()
self.sparse = sparse
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
def construct(self, logit, label):
if self.sparse:
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss = self.ce(logit, label)
return loss

View File

@ -1,60 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network."""
from mindspore.common import dtype as mstype
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore import Tensor
import mindspore.nn as nn
class CrossEntropy(_Loss):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4):
super(CrossEntropy, self).__init__()
self.factor = factor
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean(False)
def construct(self, logits, label):
logit, aux = logits
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss_logit = self.ce(logit, one_hot_label)
loss_logit = self.mean(loss_logit, 0)
one_hot_label_aux = self.onehot(label, F.shape(aux)[1], self.on_value, self.off_value)
loss_aux = self.ce(aux, one_hot_label_aux)
loss_aux = self.mean(loss_aux, 0)
return loss_logit + self.factor*loss_aux
class CrossEntropy_Val(_Loss):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits, will be used in inference process"""
def __init__(self, smooth_factor=0, num_classes=1000):
super(CrossEntropy_Val, self).__init__()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean(False)
def construct(self, logits, label):
one_hot_label = self.onehot(label, F.shape(logits)[1], self.on_value, self.off_value)
loss_logit = self.ce(logits, one_hot_label)
loss_logit = self.mean(loss_logit, 0)
return loss_logit

View File

@ -14,13 +14,78 @@
# ============================================================================
import numpy as np
from blocks import ShuffleV2Block
from mindspore import Tensor
import mindspore.nn as nn
import mindspore.ops.operations as P
class ShuffleV2Block(nn.Cell):
def __init__(self, inp, oup, mid_channels, *, ksize, stride):
super(ShuffleV2Block, self).__init__()
self.stride = stride
##assert stride in [1, 2]
self.mid_channels = mid_channels
self.ksize = ksize
pad = ksize // 2
self.pad = pad
self.inp = inp
outputs = oup - inp
branch_main = [
# pw
nn.Conv2d(in_channels=inp, out_channels=mid_channels, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
nn.ReLU(),
# dw
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=ksize, stride=stride,
pad_mode='pad', padding=pad, group=mid_channels, has_bias=False),
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
# pw-linear
nn.Conv2d(in_channels=mid_channels, out_channels=outputs, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=outputs, momentum=0.9),
nn.ReLU(),
]
self.branch_main = nn.SequentialCell(branch_main)
if stride == 2:
branch_proj = [
# dw
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=ksize, stride=stride,
pad_mode='pad', padding=pad, group=inp, has_bias=False),
nn.BatchNorm2d(num_features=inp, momentum=0.9),
# pw-linear
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=1, stride=1,
pad_mode='pad', padding=0, has_bias=False),
nn.BatchNorm2d(num_features=inp, momentum=0.9),
nn.ReLU(),
]
self.branch_proj = nn.SequentialCell(branch_proj)
else:
self.branch_proj = None
def construct(self, old_x):
if self.stride == 1:
x_proj, x = self.channel_shuffle(old_x)
return P.Concat(1)((x_proj, self.branch_main(x)))
if self.stride == 2:
x_proj = old_x
x = old_x
return P.Concat(1)((self.branch_proj(x_proj), self.branch_main(x)))
return None
def channel_shuffle(self, x):
batchsize, num_channels, height, width = P.Shape()(x)
##assert (num_channels % 4 == 0)
x = P.Reshape()(x, (batchsize * num_channels // 2, 2, height * width,))
x = P.Transpose()(x, (1, 0, 2,))
x = P.Reshape()(x, (2, -1, num_channels // 2, height, width,))
return x[0], x[1]
class ShuffleNetV2(nn.Cell):
def __init__(self, input_size=224, n_class=1000, model_size='1.0x'):
super(ShuffleNetV2, self).__init__()

View File

@ -17,7 +17,6 @@ import argparse
import ast
import os
from network import ShuffleNetV2
import mindspore.nn as nn
from mindspore import context
@ -30,9 +29,11 @@ from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.shufflenetv2 import ShuffleNetV2
from src.config import config_gpu as cfg
from src.dataset import create_dataset
from src.lr_generator import get_lr_basic
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(cfg.random_seed)
@ -73,8 +74,8 @@ if __name__ == '__main__':
net = ShuffleNetV2(n_class=cfg.num_classes, model_size=args_opt.model_size)
# loss
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
# learning rate schedule
lr = get_lr_basic(lr_init=cfg.lr_init, total_epochs=cfg.epoch_size,

View File

@ -71,8 +71,14 @@ if __name__ == '__main__':
print("Unsupported device_target ", args_opt.device_target)
exit()
else:
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=device_id)
elif args_opt.device_target == "GPU":
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
else:
print("Unsupported device_target ", args_opt.device_target)
exit()
rank_size = None
rank_id = None