adasum docs

This commit is contained in:
yao_yf 2022-02-25 11:38:02 +08:00
parent c554d4a8b1
commit 87c8e74fbb
5 changed files with 101 additions and 8 deletions

View File

@ -231,6 +231,8 @@ MindSpore中 `mindspore.nn` 接口与上一版本相比,新增、删除和支
mindspore.nn.Adam
mindspore.nn.AdamOffload
mindspore.nn.AdamWeightDecay
mindspore.nn.AdaSumByDeltaWeightWrapCell
mindspore.nn.AdaSumByGradWrapCell
mindspore.nn.ASGD
mindspore.nn.FTRL
mindspore.nn.Lamb
@ -244,6 +246,7 @@ MindSpore中 `mindspore.nn` 接口与上一版本相比,新增、删除和支
mindspore.nn.SGD
mindspore.nn.thor
Wrapper
---------

View File

@ -0,0 +1,37 @@
mindspore.nn.AdaSumByDeltaWeightWrapCell
========================================
.. py:class:: mindspore.nn.AdaSumByDeltaWeightWrapCell(optimizer)
Adaptive Summation (AdaSum)算法的实现,根据更新前后的参数差计算。
请参阅论文 `AdaSum: Scaling Distributed Training with Adaptive Summation <https://arxiv.org/abs/2006.02924>`_
公式如下:
.. math::
\begin{array}{ll}
w_{t+1}=w_{t} - \alpha \cdot Adasum(g_{1}, g_{2}) \\
w_{t+1}=w_{t} - \alpha \cdot [(1 - \frac{g_2^{T}\cdot g_1}{2\cdot \left \| g_1 \right \|^2 })\cdot g_1 + (1 - \frac{g_1^{T}\cdot g_2}{2\cdot \left \| g_2 \right \|^2 })\cdot g_2] \\
\end{array}
在本实现中, :math:`g` 代表优化器更新前后的权重的变化量,下标代表数据并行维度下不同的设备。
.. note::
本接口推荐应用于半自动并行或者全自动并行模式。针对数据并行模式推荐使用mindspore.boost功能以使用AdaSum。
使用本接口时训练的卡的数量必须是2的幂并且至少需要16张卡。目前使用本接口时不支持优化器并行和流水线并行。
**参数:**
- **optimizer** (nn.optimizer) - 必须是单输入的优化器:
**输入:**
- **gradients** (tuple[Tensor]) - `params` 的梯度形状shape`params` 相同,与所传优化器的输入一致。
**异常:**
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
- **RuntimeError** - `device_num` 不是2的幂或者小于16。

View File

@ -0,0 +1,37 @@
mindspore.nn.AdaSumByGradWrapCell
=================================
.. py:class:: mindspore.nn.AdaSumByGradWrapCell(optimizer)
Adaptive Summation (AdaSum)算法的实现,根据梯度计算。
请参阅论文 `AdaSum: Scaling Distributed Training with Adaptive Summation <https://arxiv.org/abs/2006.02924>`_
公式如下:
.. math::
\begin{array}{ll}
w_{t+1}=w_{t} - \alpha \cdot Adasum(g_{1}, g_{2}) \\
w_{t+1}=w_{t} - \alpha \cdot [(1 - \frac{g_2^{T}\cdot g_1}{2\cdot \left \| g_1 \right \|^2 })\cdot g_1 + (1 - \frac{g_1^{T}\cdot g_2}{2\cdot \left \| g_2 \right \|^2 })\cdot g_2] \\
\end{array}
在本实现中, :math:`g` 代表权重的梯度,下标代表数据并行维度下不同的设备。
.. note::
本接口推荐应用于半自动并行或者全自动并行模式。针对数据并行模式推荐使用mindspore.boost功能以使用AdaSum。
使用本接口时训练的卡的数量必须是2的幂并且至少需要16张卡。目前使用本接口时不支持优化器并行和流水线并行。
**参数:**
- **optimizer** (nn.optimizer) - 必须是单输入的优化器:
**输入:**
- **gradients** (tuple[Tensor]) - `params` 的梯度形状shape`params` 相同,与所传优化器的输入一致。
**异常:**
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
- **RuntimeError** - `device_num` 不是2的幂或者小于16。

View File

@ -224,9 +224,10 @@ def get_local_rank(group=GlobalComm.WORLD_COMM_GROUP):
ValueError: If backend is invalid.
RuntimeError: If HCCL is not available or MindSpore is GPU version.
Examples:
>>> from mindspore.context import set_context
>>> from mindspore.context import set_context, set_auto_parallel_context
>>> from mindspore.communication.management import init, get_rank, get_local_rank
>>> set_context(device_target="Ascend", device_num=16) # 2 server, each server with 8 NPU.
>>> set_context(device_target="Ascend")
>>> set_auto_parallel_context(device_num=16) # 2 server, each server with 8 NPU.
>>> init()
>>> world_rank = get_rank() # rank_id is 9.
>>> local_rank = get_local_rank()
@ -260,9 +261,10 @@ def get_group_size(group=GlobalComm.WORLD_COMM_GROUP):
RuntimeError: If HCCL/NCCL is not available.
Examples:
>>> from mindspore.context import set_context
>>> from mindspore.context import set_context, set_auto_parallel_context
>>> from mindspore.communication.management import init, get_group_size
>>> set_context(device_target="Ascend", device_num=8)
>>> set_context(device_target="Ascend")
>>> set_auto_parallel_context(device_num=8)
>>> init()
>>> group_size = get_group_size()
>>> print("group_size is: ", group_size)
@ -295,9 +297,10 @@ def get_local_rank_size(group=GlobalComm.WORLD_COMM_GROUP):
ValueError: If backend is invalid.
RuntimeError: If HCCL is not available or MindSpore is GPU version.
Examples:
>>> from mindspore.context import set_context
>>> from mindspore.context import set_context, set_auto_parallel_context
>>> from mindspore.communication.management import init, get_local_rank_size
>>> set_context(device_target="Ascend", device_num=16) # 2 server, each server with 8 NPU.
>>> set_context(device_target="Ascend")
>>> set_auto_parallel_context(device_num=16) # 2 server, each server with 8 NPU.
>>> init()
>>> local_rank_size = get_local_rank_size()
>>> print("local_rank_size is: ", local_rank_size)

View File

@ -373,13 +373,20 @@ def _parallel_check():
raise RuntimeError("Currently, the optimizer shard is not supported with applying adasum.")
if context.get_auto_parallel_context("pipeline_stages") > 1:
raise RuntimeError("Currently, the pipeline parallel is not supported with applying adasum.")
if _get_stage_device_num() < 16:
raise RuntimeError("The device_num should be at least 16 when applying adasum.")
stage_device_num = _get_stage_device_num()
if stage_device_num < 16 or (stage_device_num & (stage_device_num - 1) != 0):
raise RuntimeError("The device_num should be at least 16 and should be the power of 2 when applying adasum.")
class AdaSumByGradWrapCell(Cell):
r"""
Enable the adasum in "auto_parallel/semi_auto_parallel" mode.
Note:
When using AdaSum, the number of traning cards needs to be a power of 2 and at least 16 cards are required.
Currently, the optimizer sharding and pipeline parallel is not supported when using AdaSum.
It is recommended to using AdaSumByGradWrapCell in semi auto parallel/auto parallel mode, and in data parallel
mode, we recommend to using mindspore.boost to applying AdaSum.
Args:
optimizer (Union[Cell]): Optimizer for updating the weights. The construct function of the optimizer
requires only one input.
@ -419,6 +426,12 @@ class AdaSumByDeltaWeightWrapCell(Cell):
r"""
Enable the adasum in "auto_parallel/semi_auto_parallel" mode.
Note:
When using AdaSum, the number of traning cards needs to be a power of 2 and at least 16 cards are required.
Currently, the optimizer sharding and pipeline parallel is not supported when using AdaSum.
It is recommended to using AdaSumByDeltaWeightWrapCell in semi auto parallel/auto parallel mode,
and in data parallel mode, we recommend to using mindspore.boost to applying AdaSum.
Args:
optimizer (Union[Cell]): Optimizer for updating the weights. The construct function of the optimizer
requires only one input.