adasum docs
This commit is contained in:
parent
c554d4a8b1
commit
87c8e74fbb
|
@ -231,6 +231,8 @@ MindSpore中 `mindspore.nn` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.nn.Adam
|
||||
mindspore.nn.AdamOffload
|
||||
mindspore.nn.AdamWeightDecay
|
||||
mindspore.nn.AdaSumByDeltaWeightWrapCell
|
||||
mindspore.nn.AdaSumByGradWrapCell
|
||||
mindspore.nn.ASGD
|
||||
mindspore.nn.FTRL
|
||||
mindspore.nn.Lamb
|
||||
|
@ -244,6 +246,7 @@ MindSpore中 `mindspore.nn` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.nn.SGD
|
||||
mindspore.nn.thor
|
||||
|
||||
|
||||
Wrapper
|
||||
---------
|
||||
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
mindspore.nn.AdaSumByDeltaWeightWrapCell
|
||||
========================================
|
||||
|
||||
.. py:class:: mindspore.nn.AdaSumByDeltaWeightWrapCell(optimizer)
|
||||
|
||||
Adaptive Summation (AdaSum)算法的实现,根据更新前后的参数差计算。
|
||||
|
||||
请参阅论文 `AdaSum: Scaling Distributed Training with Adaptive Summation <https://arxiv.org/abs/2006.02924>`_。
|
||||
|
||||
公式如下:
|
||||
|
||||
.. math::
|
||||
\begin{array}{ll}
|
||||
w_{t+1}=w_{t} - \alpha \cdot Adasum(g_{1}, g_{2}) \\
|
||||
w_{t+1}=w_{t} - \alpha \cdot [(1 - \frac{g_2^{T}\cdot g_1}{2\cdot \left \| g_1 \right \|^2 })\cdot g_1 + (1 - \frac{g_1^{T}\cdot g_2}{2\cdot \left \| g_2 \right \|^2 })\cdot g_2] \\
|
||||
\end{array}
|
||||
|
||||
在本实现中, :math:`g` 代表优化器更新前后的权重的变化量,下标代表数据并行维度下不同的设备。
|
||||
|
||||
.. note::
|
||||
本接口推荐应用于半自动并行或者全自动并行模式。针对数据并行模式,推荐使用mindspore.boost功能以使用AdaSum。
|
||||
使用本接口时,训练的卡的数量必须是2的幂,并且至少需要16张卡。目前,使用本接口时不支持优化器并行和流水线并行。
|
||||
|
||||
**参数:**
|
||||
|
||||
- **optimizer** (nn.optimizer) - 必须是单输入的优化器:
|
||||
|
||||
**输入:**
|
||||
|
||||
- **gradients** (tuple[Tensor]) - `params` 的梯度,形状(shape)与 `params` 相同,与所传优化器的输入一致。
|
||||
|
||||
**异常:**
|
||||
|
||||
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
|
||||
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
|
||||
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
|
||||
- **RuntimeError** - `device_num` 不是2的幂,或者小于16。
|
|
@ -0,0 +1,37 @@
|
|||
mindspore.nn.AdaSumByGradWrapCell
|
||||
=================================
|
||||
|
||||
.. py:class:: mindspore.nn.AdaSumByGradWrapCell(optimizer)
|
||||
|
||||
Adaptive Summation (AdaSum)算法的实现,根据梯度计算。
|
||||
|
||||
请参阅论文 `AdaSum: Scaling Distributed Training with Adaptive Summation <https://arxiv.org/abs/2006.02924>`_。
|
||||
|
||||
公式如下:
|
||||
|
||||
.. math::
|
||||
\begin{array}{ll}
|
||||
w_{t+1}=w_{t} - \alpha \cdot Adasum(g_{1}, g_{2}) \\
|
||||
w_{t+1}=w_{t} - \alpha \cdot [(1 - \frac{g_2^{T}\cdot g_1}{2\cdot \left \| g_1 \right \|^2 })\cdot g_1 + (1 - \frac{g_1^{T}\cdot g_2}{2\cdot \left \| g_2 \right \|^2 })\cdot g_2] \\
|
||||
\end{array}
|
||||
|
||||
在本实现中, :math:`g` 代表权重的梯度,下标代表数据并行维度下不同的设备。
|
||||
|
||||
.. note::
|
||||
本接口推荐应用于半自动并行或者全自动并行模式。针对数据并行模式,推荐使用mindspore.boost功能以使用AdaSum。
|
||||
使用本接口时,训练的卡的数量必须是2的幂,并且至少需要16张卡。目前,使用本接口时不支持优化器并行和流水线并行。
|
||||
|
||||
**参数:**
|
||||
|
||||
- **optimizer** (nn.optimizer) - 必须是单输入的优化器:
|
||||
|
||||
**输入:**
|
||||
|
||||
- **gradients** (tuple[Tensor]) - `params` 的梯度,形状(shape)与 `params` 相同,与所传优化器的输入一致。
|
||||
|
||||
**异常:**
|
||||
|
||||
- **RuntimeError** - `parallel_mode` 使用了`stand_alone`模式, AdaSum仅支持在分布式场景下使用。
|
||||
- **RuntimeError** - 同时使用了优化器并行, 暂时不支持在优化器并行场景下使用AdaSum。
|
||||
- **RuntimeError** - 同时使用了流水线并行, 暂时不支持在流水线并行场景下使用AdaSum。
|
||||
- **RuntimeError** - `device_num` 不是2的幂,或者小于16。
|
|
@ -224,9 +224,10 @@ def get_local_rank(group=GlobalComm.WORLD_COMM_GROUP):
|
|||
ValueError: If backend is invalid.
|
||||
RuntimeError: If HCCL is not available or MindSpore is GPU version.
|
||||
Examples:
|
||||
>>> from mindspore.context import set_context
|
||||
>>> from mindspore.context import set_context, set_auto_parallel_context
|
||||
>>> from mindspore.communication.management import init, get_rank, get_local_rank
|
||||
>>> set_context(device_target="Ascend", device_num=16) # 2 server, each server with 8 NPU.
|
||||
>>> set_context(device_target="Ascend")
|
||||
>>> set_auto_parallel_context(device_num=16) # 2 server, each server with 8 NPU.
|
||||
>>> init()
|
||||
>>> world_rank = get_rank() # rank_id is 9.
|
||||
>>> local_rank = get_local_rank()
|
||||
|
@ -260,9 +261,10 @@ def get_group_size(group=GlobalComm.WORLD_COMM_GROUP):
|
|||
RuntimeError: If HCCL/NCCL is not available.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.context import set_context
|
||||
>>> from mindspore.context import set_context, set_auto_parallel_context
|
||||
>>> from mindspore.communication.management import init, get_group_size
|
||||
>>> set_context(device_target="Ascend", device_num=8)
|
||||
>>> set_context(device_target="Ascend")
|
||||
>>> set_auto_parallel_context(device_num=8)
|
||||
>>> init()
|
||||
>>> group_size = get_group_size()
|
||||
>>> print("group_size is: ", group_size)
|
||||
|
@ -295,9 +297,10 @@ def get_local_rank_size(group=GlobalComm.WORLD_COMM_GROUP):
|
|||
ValueError: If backend is invalid.
|
||||
RuntimeError: If HCCL is not available or MindSpore is GPU version.
|
||||
Examples:
|
||||
>>> from mindspore.context import set_context
|
||||
>>> from mindspore.context import set_context, set_auto_parallel_context
|
||||
>>> from mindspore.communication.management import init, get_local_rank_size
|
||||
>>> set_context(device_target="Ascend", device_num=16) # 2 server, each server with 8 NPU.
|
||||
>>> set_context(device_target="Ascend")
|
||||
>>> set_auto_parallel_context(device_num=16) # 2 server, each server with 8 NPU.
|
||||
>>> init()
|
||||
>>> local_rank_size = get_local_rank_size()
|
||||
>>> print("local_rank_size is: ", local_rank_size)
|
||||
|
|
|
@ -373,13 +373,20 @@ def _parallel_check():
|
|||
raise RuntimeError("Currently, the optimizer shard is not supported with applying adasum.")
|
||||
if context.get_auto_parallel_context("pipeline_stages") > 1:
|
||||
raise RuntimeError("Currently, the pipeline parallel is not supported with applying adasum.")
|
||||
if _get_stage_device_num() < 16:
|
||||
raise RuntimeError("The device_num should be at least 16 when applying adasum.")
|
||||
stage_device_num = _get_stage_device_num()
|
||||
if stage_device_num < 16 or (stage_device_num & (stage_device_num - 1) != 0):
|
||||
raise RuntimeError("The device_num should be at least 16 and should be the power of 2 when applying adasum.")
|
||||
|
||||
class AdaSumByGradWrapCell(Cell):
|
||||
r"""
|
||||
Enable the adasum in "auto_parallel/semi_auto_parallel" mode.
|
||||
|
||||
Note:
|
||||
When using AdaSum, the number of traning cards needs to be a power of 2 and at least 16 cards are required.
|
||||
Currently, the optimizer sharding and pipeline parallel is not supported when using AdaSum.
|
||||
It is recommended to using AdaSumByGradWrapCell in semi auto parallel/auto parallel mode, and in data parallel
|
||||
mode, we recommend to using mindspore.boost to applying AdaSum.
|
||||
|
||||
Args:
|
||||
optimizer (Union[Cell]): Optimizer for updating the weights. The construct function of the optimizer
|
||||
requires only one input.
|
||||
|
@ -419,6 +426,12 @@ class AdaSumByDeltaWeightWrapCell(Cell):
|
|||
r"""
|
||||
Enable the adasum in "auto_parallel/semi_auto_parallel" mode.
|
||||
|
||||
Note:
|
||||
When using AdaSum, the number of traning cards needs to be a power of 2 and at least 16 cards are required.
|
||||
Currently, the optimizer sharding and pipeline parallel is not supported when using AdaSum.
|
||||
It is recommended to using AdaSumByDeltaWeightWrapCell in semi auto parallel/auto parallel mode,
|
||||
and in data parallel mode, we recommend to using mindspore.boost to applying AdaSum.
|
||||
|
||||
Args:
|
||||
optimizer (Union[Cell]): Optimizer for updating the weights. The construct function of the optimizer
|
||||
requires only one input.
|
||||
|
|
Loading…
Reference in New Issue