add marginrankingloss ops
This commit is contained in:
parent
424c0b69d9
commit
87a22de9a5
|
@ -36,6 +36,7 @@ mindspore.ops.function
|
|||
mindspore.ops.lp_pool1d
|
||||
mindspore.ops.lp_pool2d
|
||||
mindspore.ops.lrn
|
||||
mindspore.ops.margin_ranking_loss
|
||||
mindspore.ops.max_pool3d
|
||||
mindspore.ops.max_unpool1d
|
||||
mindspore.ops.max_unpool2d
|
||||
|
|
|
@ -3,4 +3,6 @@ mindspore.Tensor.arcsinh
|
|||
|
||||
.. py:method:: mindspore.Tensor.arcsinh()
|
||||
|
||||
参考 `Tensor.asinh() <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.asinh.html>`_。
|
||||
Tensor.asinh()的别名。
|
||||
|
||||
详情请参考 :func:`mindspore.ops.asinh`。
|
||||
|
|
|
@ -3,4 +3,6 @@ mindspore.Tensor.arctanh
|
|||
|
||||
.. py:method:: mindspore.Tensor.arctanh()
|
||||
|
||||
参考 `Tensor.atanh() <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.atanh.html>`_。
|
||||
Tensor.atanh()的别名。
|
||||
|
||||
详情请参考 :func:`mindspore.ops.atanh`。
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.ops.margin_ranking_loss
|
||||
==================================
|
||||
|
||||
.. py:function:: mindspore.ops.margin_ranking_loss(input1, input2, target, margin=0.0, reduction='mean')
|
||||
|
||||
详情请参考 :class:`mindspore.nn.MarginRankingLoss`。
|
|
@ -36,6 +36,7 @@ Neural Network
|
|||
mindspore.ops.lp_pool1d
|
||||
mindspore.ops.lp_pool2d
|
||||
mindspore.ops.lrn
|
||||
mindspore.ops.margin_ranking_loss
|
||||
mindspore.ops.max_pool3d
|
||||
mindspore.ops.max_unpool1d
|
||||
mindspore.ops.max_unpool2d
|
||||
|
|
|
@ -3651,8 +3651,8 @@ class Tensor(Tensor_):
|
|||
|
||||
def arcsinh(self):
|
||||
r"""
|
||||
See `Tensor.asinh()
|
||||
<https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.asinh.html>`_.
|
||||
Alias for Tensor.asinh().
|
||||
For details, please refer to :func:`mindspore.ops.asinh`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('asinh')(self)
|
||||
|
@ -3673,8 +3673,8 @@ class Tensor(Tensor_):
|
|||
|
||||
def arctanh(self):
|
||||
r"""
|
||||
See `Tensor.atanh()
|
||||
<https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore/Tensor/mindspore.Tensor.atanh.html>`_.
|
||||
Alias for Tensor.atanh().
|
||||
For details, please refer to :func:`mindspore.ops.atanh`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('atanh')(self)
|
||||
|
|
|
@ -525,19 +525,12 @@ class MarginRankingLoss(LossBase):
|
|||
def __init__(self, margin=0.0, reduction='mean'):
|
||||
"""Initialize MarginRankingLoss."""
|
||||
super(MarginRankingLoss, self).__init__(reduction)
|
||||
self.margin = validator.check_value_type("margin", margin, [float], self.cls_name)
|
||||
self.reduction = reduction
|
||||
self.margin = margin
|
||||
self.maximum = P.Maximum()
|
||||
|
||||
def construct(self, input1, input2, target):
|
||||
_check_is_tensor('input1', input1, self.cls_name)
|
||||
_check_is_tensor('input2', input2, self.cls_name)
|
||||
_check_is_tensor('target', target, self.cls_name)
|
||||
F.same_type_shape(input1, input2)
|
||||
F.same_type_shape(target, input1)
|
||||
x = self.maximum(0, -target * (input1 - input2) + self.margin)
|
||||
return self.get_loss(x)
|
||||
x = ops.margin_ranking_loss(input1, input2, target, self.margin, self.reduction)
|
||||
return x
|
||||
|
||||
|
||||
class SmoothL1Loss(LossBase):
|
||||
|
|
|
@ -328,6 +328,7 @@ from .nn_func import (
|
|||
log_softmax,
|
||||
lrn,
|
||||
mish,
|
||||
margin_ranking_loss,
|
||||
max_unpool1d,
|
||||
max_unpool2d,
|
||||
max_unpool3d,
|
||||
|
|
|
@ -2645,6 +2645,66 @@ def mish(x):
|
|||
return mish_(x)
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_value_type(arg_name, arg_value, valid_types, prim_name=None):
|
||||
"""Checks whether a value is instance of some types."""
|
||||
return validator.check_value_type(arg_name, arg_value, valid_types, prim_name)
|
||||
|
||||
|
||||
@constexpr(check=False)
|
||||
def _check_is_tensor(param_name, input_data, cls_name):
|
||||
"""Internal function, used to check whether the input data is Tensor."""
|
||||
if input_data is not None and not isinstance(ops.typeof(input_data), mstype.tensor_type):
|
||||
raise TypeError(f"For '{cls_name}', the '{param_name}' must be '{mstype.tensor_type}', "
|
||||
f"but got '{ops.typeof(input_data)}'")
|
||||
|
||||
|
||||
def _get_axis(x):
|
||||
"""Get a range of axis for input."""
|
||||
shape = ops.shape(x)
|
||||
length = ops.tuple_len(shape)
|
||||
perm = ops.make_range(0, length)
|
||||
return perm
|
||||
|
||||
|
||||
def _get_loss(x, reduction, cls_name, weights=1.0):
|
||||
"""Calculate the loss with reduction and weights."""
|
||||
if reduction not in ('mean', 'sum', 'none'):
|
||||
raise ValueError(f"For '{cls_name}', the 'reduction' must be in ['mean', 'sum', 'none'], "
|
||||
f"but got {reduction}.")
|
||||
|
||||
reduce_mean = P.ReduceMean()
|
||||
reduce_sum = P.ReduceSum()
|
||||
mul = P.Mul()
|
||||
cast = P.Cast()
|
||||
|
||||
input_dtype = x.dtype
|
||||
x = cast(x, mstype.float32)
|
||||
weights = cast(weights, mstype.float32)
|
||||
x = mul(weights, x)
|
||||
if reduction == 'mean':
|
||||
x = reduce_mean(x, _get_axis(x))
|
||||
if reduction == 'sum':
|
||||
x = reduce_sum(x, _get_axis(x))
|
||||
x = cast(x, input_dtype)
|
||||
return x
|
||||
|
||||
|
||||
def margin_ranking_loss(input1, input2, target, margin=0.0, reduction='mean'):
|
||||
"""
|
||||
For details, please refer to :class:`mindspore.nn.MarginRankingLoss`.
|
||||
"""
|
||||
margin = _check_value_type("margin", margin, [float], "margin_ranking_loss")
|
||||
_check_is_tensor('input1', input1, "margin_ranking_loss")
|
||||
_check_is_tensor('input2', input2, "margin_ranking_loss")
|
||||
_check_is_tensor('target', target, "margin_ranking_loss")
|
||||
maximum = P.Maximum()
|
||||
ops.same_type_shape(input1, input2)
|
||||
ops.same_type_shape(target, input1)
|
||||
x = maximum(0, -target * (input1 - input2) + margin)
|
||||
return _get_loss(x, reduction, "margin_ranking_loss")
|
||||
|
||||
|
||||
def max_pool3d(x, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False):
|
||||
r"""
|
||||
Performs a 3D max pooling on the input Tensor.
|
||||
|
@ -4324,6 +4384,7 @@ __all__ = [
|
|||
'relu6',
|
||||
'conv3d',
|
||||
'glu',
|
||||
'margin_ranking_loss',
|
||||
'multi_margin_loss',
|
||||
'multi_label_margin_loss',
|
||||
'elu',
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore import Tensor
|
|||
class MarginRankingLoss(nn.Cell):
|
||||
def __init__(self, reduction="none"):
|
||||
super(MarginRankingLoss, self).__init__()
|
||||
self.margin_ranking_loss = nn.MarginRankingLoss(reduction=reduction)
|
||||
self.margin_ranking_loss = nn.MarginRankingLoss(margin=0.0, reduction=reduction)
|
||||
|
||||
def construct(self, x, y, label):
|
||||
return self.margin_ranking_loss(x, y, label)
|
||||
|
@ -43,60 +43,24 @@ target = Tensor(np.array([-1, -1, 1]), ms.float32)
|
|||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_margin_ranking_loss_none(mode):
|
||||
@pytest.mark.parametrize('reduction', ["none", "mean", "sum"])
|
||||
def test_margin_ranking_loss(mode, reduction):
|
||||
"""
|
||||
Feature: test MarginRankingLoss op with reduction none.
|
||||
Description: Verify the result of MarginRankingLoss.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
loss = MarginRankingLoss('none')
|
||||
loss = MarginRankingLoss(reduction=reduction)
|
||||
output = loss(input1, input2, target)
|
||||
if reduction == 'none':
|
||||
expect_output = np.array([0.98759997, 0., 2.7003999])
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_margin_ranking_loss_sum(mode):
|
||||
"""
|
||||
Feature: test MarginRankingLoss op with reduction sum.
|
||||
Description: Verify the result of MarginRankingLoss.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
loss = MarginRankingLoss('sum')
|
||||
output = loss(input1, input2, target)
|
||||
elif reduction == 'sum':
|
||||
expect_output = np.array(3.6879997)
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_margin_ranking_loss_mean(mode):
|
||||
"""
|
||||
Feature: test MarginRankingLoss op with reduction mean.
|
||||
Description: Verify the result of MarginRankingLoss.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
loss = MarginRankingLoss('mean')
|
||||
output = loss(input1, input2, target)
|
||||
else:
|
||||
expect_output = np.array(1.2293333)
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -113,6 +77,7 @@ def test_tensor_dim(mode):
|
|||
Description: Verify the result of dim.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class MarginRankingLoss(nn.Cell):
|
||||
def __init__(self, reduction):
|
||||
super(MarginRankingLoss, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
def construct(self, x, y, label, margin):
|
||||
return ops.margin_ranking_loss(x, y, label, margin=margin, reduction=self.reduction)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
@pytest.mark.parametrize('reduction', ["none", "mean", "sum"])
|
||||
def test_margin_ranking_loss(mode, reduction):
|
||||
"""
|
||||
Feature: test MarginRankingLoss op.
|
||||
Description: Verify the result of MarginRankingLoss.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
loss = MarginRankingLoss(reduction)
|
||||
input1 = Tensor(np.array([0.3864, -2.4093, -1.4076]), ms.float32)
|
||||
input2 = Tensor(np.array([-0.6012, -1.6681, 1.2928]), ms.float32)
|
||||
target = Tensor(np.array([-1, -1, 1]), ms.float32)
|
||||
output = loss(input1, input2, target, 0.0)
|
||||
if reduction == 'none':
|
||||
expect_output = np.array([0.98759997, 0., 2.7003999])
|
||||
elif reduction == 'sum':
|
||||
expect_output = np.array(3.6879997)
|
||||
else:
|
||||
expect_output = np.array(1.2293333)
|
||||
|
||||
assert np.allclose(output.asnumpy(), expect_output)
|
|
@ -0,0 +1,45 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class MarginRankingLoss(nn.Cell):
|
||||
def __init__(self, reduction):
|
||||
super(MarginRankingLoss, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
def construct(self, x, y, label, margin):
|
||||
return ops.margin_ranking_loss(x, y, label, margin, reduction=self.reduction)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('reduction', ["none", "mean", "sum"])
|
||||
def test_margin_ranking_loss(reduction):
|
||||
"""
|
||||
Feature: test MarginRankingLoss op with reduction none.
|
||||
Description: Verify the result of MarginRankingLoss.
|
||||
Expectation: expect correct forward result.
|
||||
"""
|
||||
loss = MarginRankingLoss(reduction)
|
||||
input1 = Tensor(np.array([0.3864, -2.4093, -1.4076]), ms.float32)
|
||||
input2 = Tensor(np.array([-0.6012, -1.6681, 1.2928]), ms.float32)
|
||||
target = Tensor(np.array([-1, -1, 1]), ms.float32)
|
||||
loss(input1, input2, target, 0.0)
|
Loading…
Reference in New Issue