!18953 fix docs error of TransformToBNN
Merge pull request !18953 from byweng/master
This commit is contained in:
commit
875003dfad
|
@ -38,6 +38,8 @@ class TransformToBNN:
|
|||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.nn.probability import bnn_layers
|
||||
>>>
|
||||
>>> class Net(nn.Cell):
|
||||
... def __init__(self):
|
||||
... super(Net, self).__init__()
|
||||
|
@ -57,9 +59,9 @@ class TransformToBNN:
|
|||
>>>
|
||||
>>> net = Net()
|
||||
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> net_with_loss = WithLossCell(net, criterion)
|
||||
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
||||
>>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
|
||||
>>> net_with_loss = nn.WithLossCell(net, criterion)
|
||||
>>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
|
||||
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.0001)
|
||||
"""
|
||||
|
||||
|
@ -111,14 +113,14 @@ class TransformToBNN:
|
|||
Cell, a trainable BNN model wrapped by TrainOneStepCell.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> net_with_loss = WithLossCell(net, criterion)
|
||||
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
||||
>>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
|
||||
>>> net_with_loss = nn.WithLossCell(net, criterion)
|
||||
>>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
|
||||
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
|
||||
>>> train_bnn_network = bnn_transformer.transform_to_bnn_model()
|
||||
"""
|
||||
|
@ -156,16 +158,16 @@ class TransformToBNN:
|
|||
corresponding bayesian layer.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> net_with_loss = WithLossCell(net, criterion)
|
||||
>>> train_network = TrainOneStepCell(net_with_loss, optim)
|
||||
>>> optim = nn.AdamWeightDecay(params=net.trainable_params(), learning_rate=0.0001)
|
||||
>>> net_with_loss = nn.WithLossCell(net, criterion)
|
||||
>>> train_network = nn.TrainOneStepCell(net_with_loss, optim)
|
||||
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
|
||||
>>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(Dense, DenseReparam)
|
||||
>>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(nn.Dense, bnn_layers.DenseReparam)
|
||||
"""
|
||||
if dnn_layer_type.__name__ not in ["Dense", "Conv2d"]:
|
||||
raise ValueError(' \'dnn_layer\'' + str(dnn_layer_type) +
|
||||
|
|
Loading…
Reference in New Issue