remove the reduce fusion config of resnet18.
This commit is contained in:
parent
569e679c66
commit
81706e21ad
|
@ -492,8 +492,8 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
|
|||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.0002519517 |
|
||||
| Speed | 10 ms/step(8pcs) |
|
||||
| Total time | 3 mins |
|
||||
| Speed | 13 ms/step(8pcs) |
|
||||
| Total time | 4 mins |
|
||||
| Parameters (M) | 11.2 |
|
||||
| Checkpoint for Fine tuning | 86M (.ckpt file) |
|
||||
| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) |
|
||||
|
@ -512,8 +512,8 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
|
|||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 2.15702 |
|
||||
| Speed | 140ms/step(8pcs) |
|
||||
| Total time | 131 mins |
|
||||
| Speed | 110ms/step(8pcs) (may need to set_numa_enbale in dataset.py) |
|
||||
| Total time | 110 mins |
|
||||
| Parameters (M) | 11.7 |
|
||||
| Checkpoint for Fine tuning | 90M (.ckpt file) |
|
||||
| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) |
|
||||
|
|
|
@ -459,8 +459,8 @@ result:{'top_5_accuracy':0.9342589628681178, 'top_1_accuracy':0.768065781049936}
|
|||
| 损失函数 | Softmax交叉熵 |
|
||||
| 输出 | 概率 |
|
||||
| 损失 | 0.0002519517 |
|
||||
| 速度 | 10毫秒/步(8卡) |
|
||||
| 总时长 | 3分钟 |
|
||||
| 速度 | 13毫秒/步(8卡) |
|
||||
| 总时长 | 4分钟 |
|
||||
| 参数(M) | 11.2 |
|
||||
| 微调检查点 | 86(.ckpt文件) |
|
||||
| 脚本 | [链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) |
|
||||
|
@ -479,8 +479,8 @@ result:{'top_5_accuracy':0.9342589628681178, 'top_1_accuracy':0.768065781049936}
|
|||
| 损失函数 | Softmax交叉熵 |
|
||||
| 输出 | 概率 |
|
||||
| 损失 | 2.15702 |
|
||||
| 速度 | 140毫秒/步(8卡) |
|
||||
| 总时长 | 131分钟 |
|
||||
| 速度 | 110毫秒/步(8卡) (可能需要在datasetpy中增加set_numa_enbale绑核操作) |
|
||||
| 总时长 | 110分钟 |
|
||||
| 参数(M) | 11.7 |
|
||||
| 微调检查点| 90M(.ckpt文件) |
|
||||
| 脚本 | [链接](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) |
|
||||
|
|
|
@ -176,8 +176,8 @@ class ResidualBlock(nn.Cell):
|
|||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
use_se (bool): enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
||||
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
@ -276,8 +276,9 @@ class ResidualBlockBase(nn.Cell):
|
|||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
use_se (bool): enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
||||
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
||||
res_base (bool): Enable parameter setting of resnet18. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
@ -290,9 +291,9 @@ class ResidualBlockBase(nn.Cell):
|
|||
in_channel,
|
||||
out_channel,
|
||||
stride=1,
|
||||
res_base=True,
|
||||
use_se=False,
|
||||
se_block=False):
|
||||
se_block=False,
|
||||
res_base=True):
|
||||
super(ResidualBlockBase, self).__init__()
|
||||
self.res_base = res_base
|
||||
self.conv1 = _conv3x3(in_channel, out_channel, stride=stride, res_base=self.res_base)
|
||||
|
@ -341,8 +342,10 @@ class ResNet(nn.Cell):
|
|||
out_channels (list): Output channel in each layer.
|
||||
strides (list): Stride size in each layer.
|
||||
num_classes (int): The number of classes that the training images are belonging to.
|
||||
use_se (bool): enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): use se block in SE-ResNet50 net in layer 3 and layer 4. Default: False.
|
||||
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
||||
se_block(bool): Use se block in SE-ResNet50 net in layer 3 and layer 4. Default: False.
|
||||
res_base (bool): Enable parameter setting of resnet18. Default: True.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
|
@ -432,7 +435,7 @@ class ResNet(nn.Cell):
|
|||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer.
|
||||
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
||||
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
||||
Returns:
|
||||
SequentialCell, the output layer.
|
||||
|
||||
|
|
|
@ -110,9 +110,7 @@ if __name__ == '__main__':
|
|||
set_algo_parameters(elementwise_op_strategy_follow=True)
|
||||
if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
|
||||
context.set_auto_parallel_context(all_reduce_fusion_config=[85, 160])
|
||||
elif args_opt.net == "resnet18":
|
||||
context.set_auto_parallel_context(all_reduce_fusion_config=[40, 61])
|
||||
else:
|
||||
elif args_opt.net == "resnet101":
|
||||
context.set_auto_parallel_context(all_reduce_fusion_config=[180, 313])
|
||||
init()
|
||||
# GPU target
|
||||
|
|
Loading…
Reference in New Issue