!37589 add chinese doc for erf/erfc, xlogy tensor functions

Merge pull request !37589 from cjh9368/static_check
This commit is contained in:
i-robot 2022-07-11 10:34:58 +00:00 committed by Gitee
commit 803fc1aefc
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
3 changed files with 54 additions and 43 deletions

View File

@ -424,6 +424,32 @@ mindspore.Tensor
- **TypeError** - axis不是int类型。
- **ValueError** - axis的取值不在[-self.ndim - 1, self.ndim + 1)。
.. py:method:: erf()
逐元素计算原Tensor的高斯误差函数。
更多细节参考 :func:`mindspore.ops.erf`
**返回:**
Tensor具有与原Tensor相同的数据类型和shape。
**异常:**
- **TypeError** - 原Tensor的数据类型既不是float16也不是float32。
.. py:method:: erfc()
逐元素计算原Tensor的互补误差函数。
更多细节参考 :func:`mindspore.ops.erfc`
**返回:**
Tensor具有与原Tensor相同的数据类型和shape。
**异常:**
- **TypeError** - 原Tensor的数据类型既不是float16也不是float32。
.. py:method:: fill(value)
用标量值填充数组。
@ -1813,3 +1839,28 @@ mindspore.Tensor
Tensor具有与入参 `shape` 相同的维度。
.. py:method:: xlogy(y)
计算原Tensor乘以输入Tensor的对数。当原Tensor为零时则返回零。原Tensor的数据类型需要是
`number <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore.html#mindspore.dtype>`_
`bool_ <https://www.mindspore.cn/docs/zh-CN/master/api_python/mindspore.html#mindspore.dtype>`_
后面为了使表达清晰,使用`x` 代替原Tensor。
.. math::
out_i = x_{i}\ln{y_{i}}
`x``y` 的输入遵循隐式类型转换规则使数据类型一致。输入必须是两个Tensor或一个Tensor和一个Scalar。当输入是两个Tensor时它们的数据类型不能同时是bool的它们的shape可以广播。当输入是一个Tensor和一个Scalar时Scalar只能是一个常量。
**参数:**
- **y** (Union[Tensor, number.Number, bool]) - 第二个输入为数值型。当第一个输入是Tensor或数据类型为数值型或bool的Tensor时则第二个输入是数值型或bool。当第一个输入是Scalar时则第二个输入必须是数据类型为数值型或bool的Tensor。
**返回:**
Tensorshape与广播后的shape相同数据类型为两个输入中精度较高或数数值较高的类型。
**异常:**
- **TypeError** - 如果 `x``y` 不是数值型、bool或Tensor。
- **TypeError** - 如果 `x``y` 的数据类型不是float16、float32或float64。
- **ValueError** - 如果 `x` 不能广播到与 `y` 的shape一致。

View File

@ -4362,7 +4362,7 @@ class Tensor(Tensor_):
def xlogy(self, y):
r"""
Computes the first input tensor multiplied by the logarithm of second input tensor element-wise.
Computes the self tensor multiplied by the logarithm of input tensor element-wise.
Returns zero when self tensor is zero. The data type of the self tensor should be
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.

View File

@ -2685,20 +2685,7 @@ class Erfc(Primitive):
r"""
Computes the complementary error function of `x` element-wise.
.. math::
erfc(x) = 1 - \frac{2} {\sqrt{\pi}} \int\limits_0^{x} e^{-t^{2}} dt
Inputs:
- **x** (Tensor) - The input tensor. The data type must be float16 or float32.
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
Outputs:
Tensor, has the same shap dtype as the `x`.
Raises:
TypeError: If `x` is not a Tensor.
TypeError: If dtype of `x` is not float16 or float32.
Refer to :func:`mindspore.ops.erfc` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
@ -3378,34 +3365,7 @@ class Xlogy(Primitive):
Computes the first input tensor multiplied by the logarithm of second input tensor element-wise.
Returns zero when `x` is zero.
.. math::
out_i = x_{i}\ln{y_{i}}
Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
The inputs must be two tensors or one tensor and one scalar.
When the inputs are two tensors,
dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast.
When the inputs are one tensor and one scalar,
the scalar could only be a constant.
Inputs:
- **x** (Union[Tensor, number.Number, bool]) - The first input is a number.Number or
a bool or a tensor whose data type is
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_ or
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
- **y** (Union[Tensor, number.Number, bool]) - The second input is a number.Number or
a bool when the first input is a tensor or a tensor whose data type is number or bool\_.
When the first input is Scalar, the second input must be a Tensor whose data type is number or bool\_.
Outputs:
Tensor, the shape is the same as the one after broadcasting,
and the data type is the one with higher precision or higher digits among the two inputs.
Raises:
TypeError: If `x` and `y` is not a number.Number or a bool or a Tensor.
TypeError: If dtype of `x` and `y` is not in [float16, float32, float64].
ValueError: If `x` could not be broadcast to a tensor with shape of `y`.
Refer to :func:`mindspore.ops.xlogy` for more detail.
Supported Platforms:
``Ascend`` ``CPU``