!45347 [MS][DOC]export some primitive doc
Merge pull request !45347 from mengyuanli/code_docs_export_primitive
This commit is contained in:
commit
7c0fb73222
|
@ -132,6 +132,9 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.ops.Adam
|
||||
mindspore.ops.AdamWeightDecay
|
||||
mindspore.ops.AdaptiveAvgPool2D
|
||||
mindspore.ops.AdaptiveAvgPool3D
|
||||
mindspore.ops.AdaptiveMaxPool2D
|
||||
mindspore.ops.AdaptiveMaxPool3D
|
||||
mindspore.ops.ApplyAdadelta
|
||||
mindspore.ops.ApplyAdagrad
|
||||
mindspore.ops.ApplyAdagradDA
|
||||
|
@ -185,6 +188,7 @@ MindSpore中 `mindspore.ops` 接口与上一版本相比,新增、删除和支
|
|||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.AdjustHue
|
||||
mindspore.ops.BoundingBoxDecode
|
||||
mindspore.ops.BoundingBoxEncode
|
||||
mindspore.ops.CheckValid
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.ops.AdaptiveAvgPool3D
|
||||
================================
|
||||
|
||||
.. py:class:: mindspore.ops.AdaptiveAvgPool3D(output_size)
|
||||
|
||||
三维自适应平均池化。
|
||||
|
||||
更多参考详见 :func:`mindspore.ops.adaptive_avg_pool3d`。
|
|
@ -0,0 +1,8 @@
|
|||
mindspore.ops.AdaptiveMaxPool2D
|
||||
===============================
|
||||
|
||||
.. py:class:: mindspore.ops.AdaptiveMaxPool2D(output_size)
|
||||
|
||||
二维自适应最大值池化。
|
||||
|
||||
更多参考详见 :func:`mindspore.ops.adaptive_max_pool2d`。
|
|
@ -0,0 +1,23 @@
|
|||
mindspore.ops.AdjustHue
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.AdjustHue()
|
||||
|
||||
调整 RGB 图像的色调。
|
||||
|
||||
.. note::
|
||||
该运算是种将 RGB 图像转换为浮点表示的便捷方法。通过将图像转换为HSV色彩空间并移动色调通道中的强度来调整图像,然后转换回原始数据模式。
|
||||
当多个调整依次进行时尽量减少冗余转换的数量。
|
||||
|
||||
输入:
|
||||
- **image** (Tensor) - 输入的Tensor。shape的最后一个维度的必须为3。dtype需要是float16或float32。Tensor的维度至少是3维。
|
||||
- **delta** (Tensor) - 色调通道的添加值。dtype需要是float32。Tensor必须是0维的。
|
||||
|
||||
输出:
|
||||
Tensor,具有与 `image` 相同的shape和dtype。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `image` 或 `delta` 不是Tensor。
|
||||
- **TypeError** - 如果 `image` 的dtype不是:float32或float16。
|
||||
- **TypeError** - 如果 `delta` 的dtype不是:float32。
|
||||
- **ValueError** - 如果 `image` 的维度低于3维。
|
|
@ -132,6 +132,9 @@ Optimizer
|
|||
mindspore.ops.Adam
|
||||
mindspore.ops.AdamWeightDecay
|
||||
mindspore.ops.AdaptiveAvgPool2D
|
||||
mindspore.ops.AdaptiveAvgPool3D
|
||||
mindspore.ops.AdaptiveMaxPool2D
|
||||
mindspore.ops.AdaptiveMaxPool3D
|
||||
mindspore.ops.ApplyAdadelta
|
||||
mindspore.ops.ApplyAdagrad
|
||||
mindspore.ops.ApplyAdagradDA
|
||||
|
@ -185,6 +188,7 @@ Image Processing
|
|||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.AdjustHue
|
||||
mindspore.ops.BoundingBoxDecode
|
||||
mindspore.ops.BoundingBoxEncode
|
||||
mindspore.ops.CheckValid
|
||||
|
|
|
@ -131,7 +131,7 @@ class AdjustHue(Primitive):
|
|||
|
||||
Inputs:
|
||||
- **image** (Tensor): RGB image or images. The size of the last dimension must be 3.
|
||||
the dtype is float16 or float32. At least 3-D.
|
||||
the dtype is float16 or float32. At least 3-D.
|
||||
- **delta** (Tensor): How much to add to the hue channel, the dtype is float32. Must be 0-D.
|
||||
|
||||
Output:
|
||||
|
@ -139,9 +139,9 @@ class AdjustHue(Primitive):
|
|||
|
||||
Raises:
|
||||
TypeError: If neither `image` nor `delta` is a tensor.
|
||||
TypeError: If the dtype of image not float16 or float32.
|
||||
TypeError: If the dtype of delta not float32.
|
||||
ValueError: If image have at less than 3 dimensions.
|
||||
TypeError: If the dtype of `image` is neither float16 nor float32.
|
||||
TypeError: If the dtype of `delta` not float32.
|
||||
ValueError: If the dimension of `image` is less than 3.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -375,55 +375,9 @@ class AdaptiveAvgPool2D(AdaptiveAvgPool2DV1):
|
|||
|
||||
class AdaptiveMaxPool2D(Primitive):
|
||||
r"""
|
||||
AdaptiveMaxPool2D operation.
|
||||
Applies a 2D adaptive max pooling over an input signal composed of several input planes.
|
||||
|
||||
This operator applies a 2D adaptive max pooling to an input signal composed of multiple input planes.
|
||||
That is, for any input size, the size of the specified output is H x W.
|
||||
The number of output features is equal to the number of input planes.
|
||||
|
||||
The input and output data format can be "NCHW" and "CHW". N is the batch size, C is the number of channels,
|
||||
H is the feature height, and W is the feature width.
|
||||
|
||||
For max adaptive pool2d:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{align}
|
||||
h_{start} &= floor(i * H_{in} / H_{out})\\
|
||||
h_{end} &= ceil((i + 1) * H_{in} / H_{out})\\
|
||||
w_{start} &= floor(j * W_{in} / W_{out})\\
|
||||
w_{end} &= ceil((j + 1) * W_{in} / W_{out})\\
|
||||
Output(i,j) &= {\max Input[h_{start}:h_{end}, w_{start}:w_{end}]}
|
||||
\end{align}
|
||||
|
||||
Note:
|
||||
In Ascend, the second output `argmax` is invalid, please ignore it.
|
||||
|
||||
Args:
|
||||
output_size (Union[int, tuple]): The target output size is H x W.
|
||||
ouput_size can be a tuple, or a single H for H x H, and H and W can be int or None
|
||||
which means the output size is the same as the input.
|
||||
|
||||
return_indices (bool): If `return_indices` is True, the indices of max value would be output.
|
||||
Default: False.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input of AdaptiveMaxPool2D, which is a 3D or 4D tensor,
|
||||
with float16, float32 or float64 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type as the `input_x`.
|
||||
|
||||
Shape of the output is `input_x_shape[:len(input_x_shape) - len(out_shape)] + out_shape`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `output_size` is not int or tuple.
|
||||
TypeError: If `input_x` is not a tensor.
|
||||
TypeError: If `return_indices` is not a bool.
|
||||
TypeError: If dtype of `input_x` is not float16, float32 or float64.
|
||||
ValueError: If `output_size` is a tuple and the length of `output_size` is not 2.
|
||||
ValueError: If the dimension of `input_x` is not NCHW or CHW.
|
||||
ValueError: If `output_size` is less than -1.
|
||||
Refer to :func:`mindspore.ops.adaptive_max_pool2d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
Loading…
Reference in New Issue