update ubuntu + gpu with pip/conda install script.
This commit is contained in:
parent
b94bdc8fdd
commit
7b1b133d1f
|
@ -0,0 +1,116 @@
|
|||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
MINDSPORE_VERSION=${MINDSPORE_VERSION:-1.5.0}
|
||||
PYTHON_VERSION=${PYTHON_VERSION:-3.7.5}
|
||||
MINDSPORE_VERSION=${MINDSPORE_VERSION:-1.5.0}
|
||||
CUDA_VERSION=${CUDA_VERSION:-8.0.5.39-1+cuda11.1}
|
||||
DISTRIBUTED=${DISTRIBUTED:-false}
|
||||
CUDA_INSTALL_PATH=${CUDA_INSTALL_PATH:-cuda-11}
|
||||
CUDATOOLKIT_VERSION=${CUDATOOLKIT_VERSION:-11.1}
|
||||
CUDNN_VERSION=${CUDNN_VERSION:-8.0.5}
|
||||
|
||||
#use huaweicloud mirror in China
|
||||
sudo sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
|
||||
sudo sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
|
||||
sudo apt-get update
|
||||
|
||||
# install python 3.7 and make it default
|
||||
sudo apt-get install gcc-7 libgmp-dev curl python3.7 -y
|
||||
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.7 100
|
||||
|
||||
cd /tmp
|
||||
curl -O https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py37_4.10.3-Linux-x86_64.sh
|
||||
bash Miniconda3-py37_4.10.3-Linux-x86_64.sh
|
||||
|
||||
# add conda to PATH
|
||||
echo -e 'export PATH=~/miniconda3/bin/:$PATH' >> ~/.bash_profile
|
||||
echo -e '. ~/miniconda3/etc/profile.d/conda.sh' >> ~/.bash_profile
|
||||
source ~/.bash_profile
|
||||
conda init bash
|
||||
# setting up conda mirror
|
||||
cat >~/.condarc <<END
|
||||
channels:
|
||||
- defaults
|
||||
show_channel_urls: true
|
||||
default_channels:
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
|
||||
custom_channels:
|
||||
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
|
||||
END
|
||||
|
||||
#initialize conda env and install mindspore-cpu
|
||||
|
||||
conda create -n py37 python=3.7.5 -y
|
||||
conda activate py37
|
||||
|
||||
# install gmp 6.1.2, downloading gmp is slow
|
||||
echo "install gmp start"
|
||||
|
||||
sudo apt-get install m4 -y
|
||||
cd /tmp
|
||||
curl -O https://gmplib.org/download/gmp/gmp-6.1.2.tar.xz
|
||||
xz -d gmp-6.1.2.tar.xz
|
||||
tar xvzf gmp-6.1.2.tar && cd gmp-6.1.2
|
||||
./configure --prefix=/usr/local/gmp-6.1.2
|
||||
make
|
||||
sudo make install
|
||||
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/gmp-6.1.2/lib' >> ~/.bash_profile
|
||||
|
||||
echo "install gmp success"
|
||||
# install cuda with apt-get
|
||||
echo "install cuda start"
|
||||
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
|
||||
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
|
||||
wget -c https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda-repo-ubuntu1804-11-1-local_11.1.1-455.32.00-1_amd64.deb
|
||||
sudo dpkg -i cuda-repo-ubuntu1804-11-1-local_11.1.1-455.32.00-1_amd64.deb
|
||||
sudo apt-key add /var/cuda-repo-ubuntu1804-11-1-local/7fa2af80.pub
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install cuda
|
||||
|
||||
# add cuda to path
|
||||
cat >> ~/.bash_profile <<END
|
||||
export PATH=/usr/local/cuda/bin:\$PATH
|
||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/cuda/lib64
|
||||
END
|
||||
source ~/.bash_profile
|
||||
|
||||
echo "cuda install success."
|
||||
|
||||
# install cudnn
|
||||
cd /tmp
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8_${CUDA_VERSION}_amd64.deb
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8-dev_${CUDA_VERSION}_amd64.deb
|
||||
sudo dpkg -i libcudnn8_${CUDA_VERSION}_amd64.deb libcudnn8-dev_${CUDA_VERSION}_amd64.deb
|
||||
|
||||
# Install CuDNN 8 and NCCL 2
|
||||
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
|
||||
sudo dpkg -i nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
|
||||
sudo apt update
|
||||
sudo apt install -y libcudnn8=${CUDA_VERSION} libcudnn8-dev=${CUDA_VERSION} libnccl2=2.7.8-1+cuda11.1 libnccl2-dev=2.7.8-1+cuda11.1
|
||||
|
||||
# optional (tensort for serving, openmpi for distributed training)
|
||||
if [[ "$DISTRIBUTED" == "false" ]]; then
|
||||
cd /tmp
|
||||
curl -O https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.3.tar.gz
|
||||
tar xvzf openmpi-4.0.3.tar.gz
|
||||
cd openmpi-4.0.3
|
||||
./configure --prefix=/usr/local/openmpi
|
||||
make
|
||||
sudo make install
|
||||
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/openmpi/lib' >> ~/.bash_profile
|
||||
echo 'export PATH=$PATH:/usr/local/openmpi/bin' >> ~/.bash_profile
|
||||
source ~/.bash_profile
|
||||
fi
|
||||
|
||||
# install mindspore-gpu with conda
|
||||
conda install mindspore-gpu=${MINDSPORE_VERSION} cudatoolkit=${CUDATOOLKIT_VERSION} cudnn=${CUDNN_VERSION} -c mindspore -c conda-forge
|
|
@ -1,13 +1,12 @@
|
|||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
|
||||
|
||||
PYTHON_VERSION=${PYTHON_VERSION:-3.7.5}
|
||||
MINDSPORE_VERSION=${MINDSPORE_VERSION:-1.5.0}
|
||||
|
||||
declare -A map
|
||||
|
||||
CUDA_VERSION=${CUDA_VERSION:-8.0.5.39-1+cuda11.1}
|
||||
DISTRIBUTED=${DISTRIBUTED:-false}
|
||||
CUDA_INSTALL_PATH=${CUDA_INSTALL_PATH:-cuda-11}
|
||||
ARCH=$(uname -m)
|
||||
|
||||
if [[ "${PYTHON_VERSION}" == "3.7.5" ]]; then
|
||||
VERSION="${MINDSPORE_VERSION}-cp37-cp37m"
|
||||
|
@ -21,19 +20,38 @@ sudo sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/
|
|||
sudo apt-get update
|
||||
|
||||
# install python 3.7 and make it default
|
||||
sudo apt-get install gcc-7 libgmp-dev curl python3.7 openssl -y
|
||||
sudo apt-get install gcc-7 libgmp-dev curl python3.7 openssl ubuntu-drivers-common openssl -y
|
||||
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.7 100
|
||||
|
||||
cd /tmp
|
||||
curl -O https://bootstrap.pypa.io/get-pip.py
|
||||
sudo python get-pip.py
|
||||
|
||||
# add pip mirror
|
||||
|
||||
# install cuda
|
||||
mkdir ~/.pip
|
||||
|
||||
# cd /tmp
|
||||
# wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
|
||||
cat > ~/.pip/pip.conf <<END
|
||||
[global]
|
||||
index-url = https://repo.huaweicloud.com/repository/pypi/simple
|
||||
trusted-host = repo.huaweicloud.com
|
||||
timeout = 120
|
||||
END
|
||||
|
||||
# install gmp 6.1.2, downloading gmp is slow
|
||||
|
||||
sudo apt-get install m4 -y
|
||||
cd /tmp
|
||||
curl -O https://gmplib.org/download/gmp/gmp-6.1.2.tar.xz
|
||||
xz -d gmp-6.1.2.tar.xz
|
||||
tar xvzf gmp-6.1.2.tar && cd gmp-6.1.2
|
||||
./configure --prefix=/usr/local/gmp-6.1.2
|
||||
make
|
||||
sudo make install
|
||||
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/gmp-6.1.2/lib' >> ~/.bash_profile
|
||||
|
||||
# install cuda with linux.run
|
||||
# another option is to use https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
|
||||
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
|
||||
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
|
||||
|
@ -43,24 +61,41 @@ sudo apt-key add /var/cuda-repo-ubuntu1804-11-1-local/7fa2af80.pub
|
|||
sudo apt-get update
|
||||
sudo apt-get -y install cuda
|
||||
|
||||
# cuda to add path
|
||||
|
||||
# add cuda to path
|
||||
cat >> ~/.bash_profile <<END
|
||||
export PATH=/usr/local/cuda/bin:\$PATH
|
||||
export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/cuda/lib64
|
||||
END
|
||||
|
||||
source ~/.bash_profile
|
||||
|
||||
[[ nvcc -V ]] && echo "cuda install success."
|
||||
echo "cuda install success."
|
||||
|
||||
# install cudnn
|
||||
cd /tmp
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8_${CUDA_VERSION}_amd64.deb
|
||||
wget https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu1804/x86_64/libcudnn8-dev_${CUDA_VERSION}_amd64.deb
|
||||
sudo dpkg -i libcudnn8_${CUDA_VERSION}_amd64.deb libcudnn8-dev_${CUDA_VERSION}_amd64.deb
|
||||
|
||||
sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
|
||||
# Install CuDNN 8 and NCCL 2
|
||||
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
|
||||
sudo dpkg -i nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
|
||||
sudo apt update
|
||||
sudo apt install -y libcudnn8=${CUDA_VERSION} libcudnn8-dev=${CUDA_VERSION} libnccl2=2.7.8-1+cuda11.1 libnccl2-dev=2.7.8-1+cuda11.1
|
||||
|
||||
# optional (tensort for serving, openmpi for distributed training)
|
||||
if [[ "$DISTRIBUTED" == "false" ]]; then
|
||||
cd /tmp
|
||||
curl -O https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.3.tar.gz
|
||||
tar xvzf openmpi-4.0.3.tar.gz
|
||||
cd openmpi-4.0.3
|
||||
./configure --prefix=/usr/local/openmpi
|
||||
make
|
||||
sudo make install
|
||||
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/openmpi/lib' >> ~/.bash_profile
|
||||
echo 'export PATH=$PATH:/usr/local/openmpi/bin' >> ~/.bash_profile
|
||||
source ~/.bash_profile
|
||||
fi
|
||||
|
||||
# reference
|
||||
# - https://gist.github.com/bogdan-kulynych/f64eb148eeef9696c70d485a76e42c3a
|
||||
# install mindspore gpu
|
||||
|
||||
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/${MINDSPORE_VERSION}/MindSpore/gpu/${CUDA_INSTALL_PATH}/mindspore-${VERSION}-linux_${ARCH}.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
|
Loading…
Reference in New Issue