!14791 add ascend lstm test case

From: @woshixiaoli
Reviewed-by: @liangchenghui,@chujinjin
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2021-04-12 10:36:35 +08:00 committed by Gitee
commit 7ae11f91e6
1 changed files with 179 additions and 0 deletions

View File

@ -0,0 +1,179 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import math
import pytest
import numpy as np
from mindspore import context
from mindspore import nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import ParameterTuple
from mindspore.common.parameter import Parameter
from mindspore.ops import composite as c
class GradOfAllInputsAndParams(nn.Cell):
def __init__(self, network, sens_param):
super().__init__()
self.grad = c.GradOperation(get_all=True, get_by_list=True, sens_param=sens_param)
self.network = network
self.params = ParameterTuple(self.network.trainable_params())
def construct(self, *inputs):
gout = self.grad(self.network, self.params)(*inputs)
return gout
class LSTM(nn.Cell):
def __init__(self, input_s, hidden_s, num_layers, has_bias, batch_first, bidirectional, dropout):
super().__init__()
self.lstm = nn.LSTM(input_size=input_s, hidden_size=hidden_s, num_layers=num_layers, has_bias=has_bias,
batch_first=batch_first, bidirectional=bidirectional, dropout=dropout)
def construct(self, inp, h0, c0):
return self.lstm(inp, (h0, c0))
class LSTMWeightBias():
def __init__(self, num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional):
self.num_layers = num_layers
self.has_bias = has_bias
self.input_s = input_s
self.num_directions = num_directions
self.hidden_s = hidden_s
self.bidirectional = bidirectional
def get_weight_bias(self):
stdv = 1 / math.sqrt(self.hidden_s)
gate_size = 4 * self.hidden_s
w_list_value = []
b_list_value = []
for i in range(self.num_layers):
b0 = np.zeros(gate_size, dtype=np.float16)
w_shape = self.input_s if i == 0 else (self.num_directions * self.hidden_s)
w_np = np.random.uniform(-stdv, stdv, (w_shape + self.hidden_s, gate_size)).astype(np.float16)
w_list_value.append(Parameter(initializer(Tensor(w_np), [w_shape + self.hidden_s, gate_size]),
name="weight_fw" + str(i)))
if self.has_bias:
b_np = np.random.uniform(-stdv, stdv, gate_size).astype(np.float16)
b_list_value.append(Parameter(initializer(Tensor(b_np), [gate_size]), name="bias_fw" + str(i)))
else:
b_list_value.append(Parameter(initializer(Tensor(b0), [gate_size]), name="bias_fw" + str(i)))
if self.bidirectional:
w_bw_np = np.random.uniform(-stdv, stdv, (w_shape + self.hidden_s, gate_size)).astype(np.float16)
b_list_value.append(Parameter(initializer(Tensor(w_bw_np), [w_shape + self.hidden_s, gate_size]),
name="weight_bw" + str(i)))
b_bw_np = np.random.uniform(-stdv, stdv, (4 * self.hidden_s)).astype(
np.float16) if self.has_bias else b0
b_list_value.append(Parameter(initializer(Tensor(b_bw_np), [gate_size]), name="bias_bw" + str(i)))
w_list_value = ParameterTuple(w_list_value)
b_list_value = ParameterTuple(b_list_value)
return w_list_value, b_list_value
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_sit_lstm_forward_input_3_32_32_is_32_hs_16():
input_s = 32
hidden_s = 16
has_bias = True
bidirectional = False
num_layers = 1
num_directions = 1
fact = LSTMWeightBias(num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional)
w_list_value, b_list_value = fact.get_weight_bias()
h0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32))
c0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32))
input_ms = Tensor(np.random.randn(3, 32, 32).astype(np.float32))
# graph mode
context.set_context(mode=context.GRAPH_MODE)
net = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False,
bidirectional=bidirectional, dropout=0.0)
net.lstm.w_list = w_list_value
net.lstm.b_list = b_list_value
out, (hy, cy) = net(input_ms, h0, c0)
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE)
net_pynative = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False,
bidirectional=bidirectional, dropout=0.0)
net_pynative.lstm.w_list = w_list_value
net_pynative.lstm.b_list = b_list_value
out_pynative, (hy_pynative, cy_pynative) = net_pynative(input_ms, h0, c0)
assert np.allclose(out.asnumpy(), out_pynative.asnumpy(), 0.0001, 0.0001)
assert np.allclose(hy.asnumpy(), hy_pynative.asnumpy(), 0.0001, 0.0001)
assert np.allclose(cy.asnumpy(), cy_pynative.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_sit_lstm_grad_input_3_32_32_is_32_hs_16():
input_s = 32
hidden_s = 16
has_bias = True
bidirectional = False
num_layers = 1
num_directions = 1
fact = LSTMWeightBias(num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional)
w_list_value, b_list_value = fact.get_weight_bias()
h0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32))
c0 = Tensor(np.random.randn(num_layers * 1, 32, 16).astype(np.float32))
input_ms = Tensor(np.random.randn(3, 32, 32).astype(np.float32))
# graph mode
context.set_context(mode=context.GRAPH_MODE)
net = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False,
bidirectional=bidirectional, dropout=0.0)
net.lstm.w_list = w_list_value
net.lstm.b_list = b_list_value
grad_net_inp = GradOfAllInputsAndParams(net, sens_param=False)
grad_net_inp.set_train()
out_grad, _ = grad_net_inp(input_ms, h0, c0)
x_grad = out_grad[0].asnumpy()
h_grad = out_grad[1].asnumpy()
c_grad = out_grad[2].asnumpy()
# pynative mode
context.set_context(mode=context.PYNATIVE_MODE)
net_pynative = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=False,
bidirectional=bidirectional, dropout=0.0)
net_pynative.lstm.w_list = w_list_value
net_pynative.lstm.b_list = b_list_value
grad_net_inp_pynative = GradOfAllInputsAndParams(net_pynative, sens_param=False)
grad_net_inp_pynative.set_train()
out_grad_pynative, _ = grad_net_inp_pynative(input_ms, h0, c0)
x_grad_pynative = out_grad_pynative[0].asnumpy()
h_grad_pynative = out_grad_pynative[1].asnumpy()
c_grad_pynative = out_grad_pynative[2].asnumpy()
assert np.allclose(x_grad, x_grad_pynative, 0.0001, 0.0001)
assert np.allclose(h_grad, h_grad_pynative, 0.0001, 0.0001)
assert np.allclose(c_grad, c_grad_pynative, 0.0001, 0.0001)