!21559 Add faq in modelzoo

Merge pull request !21559 from chenhaozhe/code_docs_add_modelzoo_fqa
This commit is contained in:
i-robot 2021-08-11 03:59:27 +00:00 committed by Gitee
commit 74eefbd390
4 changed files with 16 additions and 0 deletions

View File

@ -113,3 +113,9 @@ MindSpore is Apache 2.0 licensed. Please see the LICENSE file.
## License ## License
[Apache License 2.0](https://gitee.com/mindspore/mindspore/blob/master/LICENSE) [Apache License 2.0](https://gitee.com/mindspore/mindspore/blob/master/LICENSE)
## FAQ
- **Q: How to resolve the lack of memory while using `PYNATIVE_MODE` with errors such as *Failed to alloc memory pool memory*?**
**A**: `PYNATIVE_MODE` usually requires more memory than `GRAPH_MODE`, especially in training process which have to deal with back propagation. You could try using smaller batch size.

View File

@ -113,3 +113,9 @@ MindSpore已获得Apache 2.0许可请参见LICENSE文件。
## 许可证 ## 许可证
[Apache 2.0许可证](https://gitee.com/mindspore/mindspore/blob/master/LICENSE) [Apache 2.0许可证](https://gitee.com/mindspore/mindspore/blob/master/LICENSE)
## FAQ
- **Q: 使用`PYNATIVE_MODE`运行模型出现错误内存不足,例如*Failed to alloc memory pool memory*, 该怎么处理?**
**A**: `PYNATIVE_MODE`通常比`GRAPH_MODE`使用更多内存尤其是在需要进行反向传播计算的训练图中你可以尝试使用一些更小的batch size.

View File

@ -789,6 +789,8 @@ Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/
# FAQ # FAQ
Refer to the [ModelZoo FAQ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo#FAQ) for some common question.
- **Q: How to resolve the continually overflow?** - **Q: How to resolve the continually overflow?**
**A**: Continually overflow is usually caused by using too high learning rate. **A**: Continually overflow is usually caused by using too high learning rate.

View File

@ -747,6 +747,8 @@ run_pretrain.py中设置了随机种子确保分布式训练中每个节点
# FAQ # FAQ
优先参考[ModelZoo FAQ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo#FAQ)来查找一些常见的公共问题。
- **Q: 运行过程中发生持续溢出怎么办?** - **Q: 运行过程中发生持续溢出怎么办?**
**A** 持续溢出通常是因为使用了较高的学习率导致训练不收敛。可以考虑修改yaml配置文件中的参数调低`learning_rate`来降低初始学习率或提高`power`加速学习率衰减。 **A** 持续溢出通常是因为使用了较高的学习率导致训练不收敛。可以考虑修改yaml配置文件中的参数调低`learning_rate`来降低初始学习率或提高`power`加速学习率衰减。