add uncertainty toolbox
This commit is contained in:
parent
fe2c2e8330
commit
735279a063
|
@ -0,0 +1,21 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Uncertainty toolbox.
|
||||
"""
|
||||
|
||||
from .uncertainty_evaluation import UncertaintyEvaluation
|
||||
|
||||
__all__ = ['UncertaintyEvaluation']
|
|
@ -0,0 +1,298 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Toolbox for Uncertainty Evaluation."""
|
||||
import numpy as np
|
||||
|
||||
from mindspore._checkparam import check_int_positive
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from ...cell import Cell
|
||||
from ...layer.basic import Dense, Flatten, Dropout
|
||||
from ...layer.conv import Conv2d
|
||||
from ...layer.container import SequentialCell
|
||||
from ...loss import SoftmaxCrossEntropyWithLogits, MSELoss
|
||||
from ...metrics import Accuracy, MSE
|
||||
from ...optim import Adam
|
||||
|
||||
|
||||
class UncertaintyEvaluation:
|
||||
r"""
|
||||
Toolbox for Uncertainty Evaluation.
|
||||
|
||||
Args:
|
||||
model (Cell): The model for uncertainty evaluation.
|
||||
train_dataset (Dataset): A dataset iterator.
|
||||
task_type (str): Option for the task types of model
|
||||
- regression: A regression model.
|
||||
- classification: A classification model.
|
||||
num_classes (int): The number of labels of classification.
|
||||
If the task type is classification, it must be set; if not classification, it need not to be set.
|
||||
Default: None.
|
||||
epochs (int): Total number of iterations on the data. Default: None.
|
||||
uncertainty_model_path (str): The save or read path of the uncertainty model.
|
||||
|
||||
Examples:
|
||||
>>> network = LeNet()
|
||||
>>> param_dict = load_checkpoint('checkpoint_lenet.ckpt')
|
||||
>>> load_param_into_net(network, param_dict)
|
||||
>>> ds_train = create_dataset('workspace/mnist/train')
|
||||
>>> evaluation = UncertaintyEvaluation(model=network,
|
||||
>>> train_dataset=ds_train,
|
||||
>>> task_type='classification',
|
||||
>>> num_classes=10,
|
||||
>>> epochs=5,
|
||||
>>> uncertainty_model_path=None)
|
||||
>>> epistemic_uncertainty = evaluation.eval_epistemic(eval_data)
|
||||
>>> aleatoric_uncertainty = evaluation.eval_aleatoric(eval_data)
|
||||
"""
|
||||
|
||||
def __init__(self, model, train_dataset, task_type, num_classes=None, epochs=None,
|
||||
uncertainty_model_path=None):
|
||||
self.model = model
|
||||
self.train_dataset = train_dataset
|
||||
self.task_type = task_type
|
||||
self.num_classes = check_int_positive(num_classes)
|
||||
self.epochs = epochs
|
||||
self.uncer_model_path = uncertainty_model_path
|
||||
self.uncer_model = None
|
||||
self.concat = P.Concat(axis=0)
|
||||
self.sum = P.ReduceSum()
|
||||
self.pow = P.Pow()
|
||||
if self.task_type not in ('regression', 'classification'):
|
||||
raise ValueError('The task should be regression or classification.')
|
||||
if self.task_type == 'classification':
|
||||
if self.num_classes is None:
|
||||
raise ValueError("Classification task needs to input labels.")
|
||||
|
||||
def _uncertainty_normalize(self, data):
|
||||
area = np.max(data) - np.min(data)
|
||||
return (data - np.min(data)) / area
|
||||
|
||||
def _get_epistemic_uncertainty_model(self):
|
||||
"""
|
||||
Get the model which can obtain the epistemic uncertainty.
|
||||
"""
|
||||
if self.uncer_model and self.uncer_model_path is None:
|
||||
self.uncer_model = EpistemicUncertaintyModel(self.model)
|
||||
if self.uncer_model.drop_count == 0:
|
||||
if self.task_type == 'classification':
|
||||
net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_opt = Adam(self.uncer_model.trainable_params())
|
||||
model = Model(self.uncer_model, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
else:
|
||||
net_loss = MSELoss()
|
||||
net_opt = Adam(self.uncer_model.trainable_params())
|
||||
model = Model(self.uncer_model, net_loss, net_opt, metrics={"MSE": MSE()})
|
||||
model.train(self.epochs, self.train_dataset, callbacks=[LossMonitor()])
|
||||
elif self.uncer_model is None:
|
||||
uncer_param_dict = load_checkpoint(self.uncer_model_path)
|
||||
load_param_into_net(self.uncer_model, uncer_param_dict)
|
||||
|
||||
def _eval_epistemic_uncertainty(self, eval_data, mc=10):
|
||||
"""
|
||||
Evaluate the epistemic uncertainty of classification and regression models using MC dropout.
|
||||
"""
|
||||
self._get_epistemic_uncertainty_model()
|
||||
self.uncer_model.set_train(True)
|
||||
outputs = [None] * mc
|
||||
for i in range(mc):
|
||||
pred = self.uncer_model(eval_data)
|
||||
outputs[i] = pred.asnumpy()
|
||||
if self.task_type == 'classification':
|
||||
outputs = np.stack(outputs, axis=2)
|
||||
epi_uncertainty = outputs.var(axis=2)
|
||||
else:
|
||||
outputs = np.stack(outputs, axis=1)
|
||||
epi_uncertainty = outputs.var(axis=1)
|
||||
epi_uncertainty = self._uncertainty_normalize(np.array(epi_uncertainty))
|
||||
return epi_uncertainty
|
||||
|
||||
def _get_aleatoric_uncertainty_model(self):
|
||||
"""
|
||||
Get the model which can obtain the aleatoric uncertainty.
|
||||
"""
|
||||
if self.uncer_model and self.uncer_model_path is None:
|
||||
self.uncer_model = AleatoricUncertaintyModel(self.model, self.num_classes, self.task_type)
|
||||
net_loss = AleatoricLoss(self.task_type)
|
||||
net_opt = Adam(self.uncer_model.trainable_params())
|
||||
if self.task_type == 'classification':
|
||||
model = Model(self.uncer_model, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
else:
|
||||
model = Model(self.uncer_model, net_loss, net_opt, metrics={"MSE": MSE()})
|
||||
model.train(self.epochs, self.train_dataset, callbacks=[LossMonitor()])
|
||||
elif self.uncer_model is None:
|
||||
uncer_param_dict = load_checkpoint(self.uncer_model_path)
|
||||
load_param_into_net(self.uncer_model, uncer_param_dict)
|
||||
|
||||
def _eval_aleatoric_uncertainty(self, eval_data):
|
||||
"""
|
||||
Evaluate the aleatoric uncertainty of classification and regression models.
|
||||
"""
|
||||
self._get_aleatoric_uncertainty_model()
|
||||
_, var = self.uncer_model(eval_data)
|
||||
ale_uncertainty = self.sum(self.pow(var, 2), 1)
|
||||
ale_uncertainty = self._uncertainty_normalize(ale_uncertainty.asnumpy())
|
||||
return ale_uncertainty
|
||||
|
||||
def eval_epistemic(self, eval_data):
|
||||
"""
|
||||
Evaluate the epistemic uncertainty of inference results, which also called model uncertainty.
|
||||
|
||||
Args:
|
||||
eval_data (Tensor): The data samples to be evaluated, the shape should be (N,C,H,W).
|
||||
|
||||
Returns:
|
||||
numpy.dtype, the epistemic uncertainty of inference results of data samples.
|
||||
"""
|
||||
uncertainty = self._eval_aleatoric_uncertainty(eval_data)
|
||||
return uncertainty
|
||||
|
||||
def eval_aleatoric(self, eval_data):
|
||||
"""
|
||||
Evaluate the aleatoric uncertainty of inference results, which also called data uncertainty.
|
||||
|
||||
Args:
|
||||
eval_data (Tensor): The data samples to be evaluated, the shape should be (N,C,H,W).
|
||||
|
||||
Returns:
|
||||
numpy.dtype, the aleatoric uncertainty of inference results of data samples.
|
||||
"""
|
||||
uncertainty = self._eval_epistemic_uncertainty(eval_data)
|
||||
return uncertainty
|
||||
|
||||
|
||||
class EpistemicUncertaintyModel(Cell):
|
||||
"""
|
||||
Using dropout during training and eval time which is approximate bayesian inference. In this way,
|
||||
we can obtain the epistemic uncertainty (also called model uncertainty).
|
||||
|
||||
If the original model has Dropout layer, just use dropout when eval time, if not, add dropout layer
|
||||
after Dense layer or Conv layer, then use dropout during train and eval time.
|
||||
|
||||
See more details in `Dropout as a Bayesian Approximation: Representing Model uncertainty in Deep Learning
|
||||
<https://arxiv.org/abs/1506.02142>`.
|
||||
"""
|
||||
|
||||
def __init__(self, model):
|
||||
super(EpistemicUncertaintyModel, self).__init__()
|
||||
self.drop_count = 0
|
||||
self.model = self._make_epistemic(model)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.model(x)
|
||||
return x
|
||||
|
||||
def _make_epistemic(self, model, dropout_rate=0.5):
|
||||
"""
|
||||
The dropout rate is set to 0.5 by default.
|
||||
"""
|
||||
for (name, layer) in model.name_cells().items():
|
||||
if isinstance(layer, Dropout):
|
||||
self.drop_count += 1
|
||||
return model
|
||||
for (name, layer) in model.name_cells().items():
|
||||
if isinstance(layer, (Conv2d, Dense)):
|
||||
uncertainty_layer = layer
|
||||
uncertainty_name = name
|
||||
drop = Dropout(keep_prob=dropout_rate)
|
||||
bnn_drop = SequentialCell([uncertainty_layer, drop])
|
||||
setattr(model, uncertainty_name, bnn_drop)
|
||||
return model
|
||||
raise ValueError("The model has not Dense Layer or Convolution Layer, "
|
||||
"it can not evaluate epistemic uncertainty so far.")
|
||||
|
||||
|
||||
class AleatoricUncertaintyModel(Cell):
|
||||
"""
|
||||
The aleatoric uncertainty (also called data uncertainty) is caused by input data, to obtain this
|
||||
uncertainty, the loss function should be modified in order to add variance into loss.
|
||||
|
||||
See more details in `What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
|
||||
<https://arxiv.org/abs/1703.04977>`.
|
||||
"""
|
||||
|
||||
def __init__(self, model, labels, task):
|
||||
super(AleatoricUncertaintyModel, self).__init__()
|
||||
self.task = task
|
||||
if task == 'classification':
|
||||
self.model = model
|
||||
self.var_layer = Dense(labels, labels)
|
||||
else:
|
||||
self.model, self.var_layer, self.pred_layer = self._make_aleatoric(model)
|
||||
|
||||
def construct(self, x):
|
||||
if self.task == 'classification':
|
||||
pred = self.model(x)
|
||||
var = self.var_layer(pred)
|
||||
else:
|
||||
x = self.model(x)
|
||||
pred = self.pred_layer(x)
|
||||
var = self.var_layer(x)
|
||||
return pred, var
|
||||
|
||||
def _make_aleatoric(self, model):
|
||||
"""
|
||||
In order to add variance into original loss, add var Layer after the original network.
|
||||
"""
|
||||
dense_layer = dense_name = None
|
||||
for (name, layer) in model.name_cells().items():
|
||||
if isinstance(layer, Dense):
|
||||
dense_layer = layer
|
||||
dense_name = name
|
||||
if dense_layer is None:
|
||||
raise ValueError("The model has not Dense Layer, "
|
||||
"it can not evaluate aleatoric uncertainty so far.")
|
||||
setattr(model, dense_name, Flatten())
|
||||
var_layer = Dense(dense_layer.in_channels, dense_layer.out_channels)
|
||||
return model, var_layer, dense_layer
|
||||
|
||||
|
||||
class AleatoricLoss(Cell):
|
||||
"""
|
||||
The loss function of aleatoric model, different modification methods are adopted for
|
||||
classification and regression.
|
||||
"""
|
||||
|
||||
def __init__(self, task):
|
||||
super(AleatoricLoss, self).__init__()
|
||||
self.task = task
|
||||
if self.task == 'classification':
|
||||
self.sum = P.ReduceSum()
|
||||
self.exp = P.Exp()
|
||||
self.normal = C.normal
|
||||
self.to_tensor = P.ScalarToArray()
|
||||
self.entropy = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
else:
|
||||
self.mean = P.ReduceMean()
|
||||
self.exp = P.Exp()
|
||||
self.pow = P.Pow()
|
||||
|
||||
def construct(self, data_pred, y):
|
||||
y_pred, var = data_pred
|
||||
if self.task == 'classification':
|
||||
sample_times = 10
|
||||
epsilon = self.normal((1, sample_times), self.to_tensor(0.0), self.to_tensor(1.0), 0)
|
||||
total_loss = 0
|
||||
for i in range(sample_times):
|
||||
y_pred_i = y_pred + epsilon[0][i] * var
|
||||
loss = self.entropy(y_pred_i, y)
|
||||
total_loss += loss
|
||||
avg_loss = total_loss / sample_times
|
||||
return avg_loss
|
||||
loss = self.mean(0.5 * self.exp(-var) * self.pow(y - y_pred, 2) + 0.5 * var)
|
||||
return loss
|
|
@ -0,0 +1,133 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test uncertainty toolbox """
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as CV
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.nn.probability.toolbox.uncertainty_evaluation import UncertaintyEvaluation
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
||||
num_parallel_workers=1):
|
||||
"""
|
||||
create dataset for train or test
|
||||
"""
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
shift = 0.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
buffer_size = 10000
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# get trained model
|
||||
network = LeNet5()
|
||||
param_dict = load_checkpoint('checkpoint_lenet.ckpt')
|
||||
load_param_into_net(network, param_dict)
|
||||
# get train and eval dataset
|
||||
ds_train = create_dataset('workspace/mnist/train')
|
||||
ds_eval = create_dataset('workspace/mnist/test')
|
||||
evaluation = UncertaintyEvaluation(model=network,
|
||||
train_dataset=ds_train,
|
||||
task_type='classification',
|
||||
num_classes=10,
|
||||
epochs=5,
|
||||
uncertainty_model_path=None)
|
||||
for eval_data in ds_eval.create_dict_iterator():
|
||||
eval_data = Tensor(eval_data['image'], mstype.float32)
|
||||
epistemic_uncertainty = evaluation.eval_epistemic(eval_data)
|
||||
aleatoric_uncertainty = evaluation.eval_aleatoric(eval_data)
|
Loading…
Reference in New Issue