!1800 fix cpu StridedSliceGrad bug when different dims between input and output
Merge pull request !1800 from sunsuodong/fix_StrideSliceGrad
This commit is contained in:
commit
71dce2f586
|
@ -61,11 +61,11 @@ void SliceGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||||
end_.emplace_back(begin_[i] + sizes[i]);
|
end_.emplace_back(begin_[i] + sizes[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
CPUKernelUtils::ExpandDimsTo4(&output_dx_shape_);
|
|
||||||
auto input_len = input_dy_shape_.size();
|
auto output_len = output_dx_shape_.size();
|
||||||
if (input_len < 4) {
|
if (output_len < 4) {
|
||||||
for (size_t i = 0; i < 4 - input_len; ++i) {
|
for (size_t i = 0; i < 4 - output_len; ++i) {
|
||||||
input_dy_shape_.insert(input_dy_shape_.begin(), 1);
|
output_dx_shape_.insert(output_dx_shape_.begin(), 1);
|
||||||
begin_.insert(begin_.begin(), 0);
|
begin_.insert(begin_.begin(), 0);
|
||||||
strides_.insert(strides_.begin(), 1);
|
strides_.insert(strides_.begin(), 1);
|
||||||
end_.insert(end_.begin(), 1);
|
end_.insert(end_.begin(), 1);
|
||||||
|
|
|
@ -19,6 +19,7 @@ import pytest
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
from mindspore.common.api import ms_function
|
from mindspore.common.api import ms_function
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.ops.operations import _grad_ops as G
|
from mindspore.ops.operations import _grad_ops as G
|
||||||
|
@ -38,7 +39,7 @@ class StridedSliceGrad(nn.Cell):
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_x86_cpu_training
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_slice():
|
def test_slice():
|
||||||
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
|
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
|
||||||
|
@ -47,3 +48,29 @@ def test_slice():
|
||||||
output = ssg(dy, x)
|
output = ssg(dy, x)
|
||||||
expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]]
|
expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]]
|
||||||
assert (output.asnumpy() == expect).all()
|
assert (output.asnumpy() == expect).all()
|
||||||
|
|
||||||
|
|
||||||
|
class StridedSliceGrad2(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(StridedSliceGrad2, self).__init__()
|
||||||
|
self.ssg = G.StridedSliceGrad()
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, dy, x):
|
||||||
|
return self.ssg(dy, self.shape(x), (0, 0, 0), (1, 4, 2), (1, 1, 1))
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_slice2():
|
||||||
|
x = Tensor(np.arange(2 * 4 * 2).reshape(2, 4, 2), mstype.float32)
|
||||||
|
dy = Tensor(np.arange(4 * 2).reshape(4, 2), mstype.float32)
|
||||||
|
ssg = StridedSliceGrad2()
|
||||||
|
output = ssg(dy, x)
|
||||||
|
expect = [[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]
|
||||||
|
assert (output.asnumpy() == expect).all()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_slice()
|
||||||
|
test_slice2()
|
||||||
|
|
|
@ -34,7 +34,7 @@ class StridedSlice(nn.Cell):
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_x86_cpu_training
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_slice():
|
def test_slice():
|
||||||
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
|
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
|
||||||
|
|
Loading…
Reference in New Issue