!1800 fix cpu StridedSliceGrad bug when different dims between input and output

Merge pull request !1800 from sunsuodong/fix_StrideSliceGrad
This commit is contained in:
mindspore-ci-bot 2020-06-02 20:37:55 +08:00 committed by Gitee
commit 71dce2f586
3 changed files with 34 additions and 7 deletions

View File

@ -61,11 +61,11 @@ void SliceGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
end_.emplace_back(begin_[i] + sizes[i]);
}
}
CPUKernelUtils::ExpandDimsTo4(&output_dx_shape_);
auto input_len = input_dy_shape_.size();
if (input_len < 4) {
for (size_t i = 0; i < 4 - input_len; ++i) {
input_dy_shape_.insert(input_dy_shape_.begin(), 1);
auto output_len = output_dx_shape_.size();
if (output_len < 4) {
for (size_t i = 0; i < 4 - output_len; ++i) {
output_dx_shape_.insert(output_dx_shape_.begin(), 1);
begin_.insert(begin_.begin(), 0);
strides_.insert(strides_.begin(), 1);
end_.insert(end_.begin(), 1);

View File

@ -19,6 +19,7 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.operations import _grad_ops as G
@ -38,7 +39,7 @@ class StridedSliceGrad(nn.Cell):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice():
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))
@ -47,3 +48,29 @@ def test_slice():
output = ssg(dy, x)
expect = [[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]], [[5, 1, 5], [6, 1, 8]]]
assert (output.asnumpy() == expect).all()
class StridedSliceGrad2(nn.Cell):
def __init__(self):
super(StridedSliceGrad2, self).__init__()
self.ssg = G.StridedSliceGrad()
self.shape = P.Shape()
@ms_function
def construct(self, dy, x):
return self.ssg(dy, self.shape(x), (0, 0, 0), (1, 4, 2), (1, 1, 1))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice2():
x = Tensor(np.arange(2 * 4 * 2).reshape(2, 4, 2), mstype.float32)
dy = Tensor(np.arange(4 * 2).reshape(4, 2), mstype.float32)
ssg = StridedSliceGrad2()
output = ssg(dy, x)
expect = [[[0., 1.], [2., 3.], [4., 5.], [6., 7.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]
assert (output.asnumpy() == expect).all()
if __name__ == '__main__':
test_slice()
test_slice2()

View File

@ -34,7 +34,7 @@ class StridedSlice(nn.Cell):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice():
x = Tensor(np.array([[[1., 1., 1.], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 7, 8]]]).astype(np.float32))