!44877 Fix maxpool3d infer for dynamic shape input

Merge pull request !44877 from panzhihui/fix_maxpool3d_infer
This commit is contained in:
i-robot 2022-11-04 06:11:42 +00:00 committed by Gitee
commit 716d598b37
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
2 changed files with 58 additions and 3 deletions

View File

@ -165,9 +165,10 @@ abstract::ShapePtr MaxPool3DInferShape(const PrimitivePtr &primitive, const std:
MS_EXCEPTION_IF_NULL(item);
}
auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape];
// ToSupport Dynamic rank
if (IsDynamicRank(in_shape)) {
return std::make_shared<abstract::Shape>(std::vector<int64_t>{abstract::Shape::kShapeRankAny});
if (IsDynamic(in_shape)) {
return std::make_shared<abstract::Shape>(
std::vector<int64_t>{abstract::Shape::kShapeDimAny, abstract::Shape::kShapeDimAny, abstract::Shape::kShapeDimAny,
abstract::Shape::kShapeDimAny, abstract::Shape::kShapeDimAny});
}
(void)CheckAndConvertUtils::CheckInteger("x_rank", SizeToLong(in_shape.size()), kEqual, k5DInputDims, op_name);

View File

@ -0,0 +1,54 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test Maxpool3d dynamic shape"""
import numpy as np
import pytest
import mindspore as ms
from mindspore import ops
from mindspore import nn
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.pool = ops.MaxPool3D(kernel_size=2, strides=1, pad_mode="valid")
def construct(self, x):
out = self.pool(x)
return out
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_maxpool3d_valid(mode):
"""
Feature: MaxPool3d
Description: test dynamic shape of MaxPool3d
Expectation: success
"""
ms.set_context(mode=mode)
x = ms.Tensor(np.arange(1 * 2 * 2 * 2 * 3).reshape((1, 2, 2, 2, 3)), ms.float32)
expected_shape = (1, 2, 1, 1, 2)
net = Net()
x_dyn = ms.Tensor(shape=[None]*len(x.shape), dtype=x.dtype)
net.set_inputs(x_dyn)
output = net(x)
assert output.shape == expected_shape