diff --git a/docs/api/api_python/ops/mindspore.ops.Custom.rst b/docs/api/api_python/ops/mindspore.ops.Custom.rst index 63cd054e041..c8c794544b4 100644 --- a/docs/api/api_python/ops/mindspore.ops.Custom.rst +++ b/docs/api/api_python/ops/mindspore.ops.Custom.rst @@ -5,7 +5,7 @@ mindspore.ops.Custom `Custom` 算子是MindSpore自定义算子的统一接口。用户可以利用该接口自行定义MindSpore内置算子库尚未包含的算子。 根据输入函数的不用,你可以创建多个自定义算子,并且把它们用在神经网络中。 - 关于自定义算子的详细说明和介绍,包括参数的正确书写,见编程指南 https://www.mindspore.cn/tutorials/experts/zh-CN/master/operation/op_custom.html 。 + 关于自定义算子的详细说明和介绍,包括参数的正确书写,见 `教程 `_ 。 .. warning:: 这是一个实验性接口,后续可能删除或修改。 diff --git a/docs/api/api_python/ops/mindspore.ops.func_scatter_div.rst b/docs/api/api_python/ops/mindspore.ops.func_scatter_div.rst index 3bb126cb0de..e635085fc9d 100644 --- a/docs/api/api_python/ops/mindspore.ops.func_scatter_div.rst +++ b/docs/api/api_python/ops/mindspore.ops.func_scatter_div.rst @@ -17,7 +17,7 @@ mindspore.ops.scatter_div - **indices** (Tensor) - 指定相除操作的索引,数据类型必须为mindspore.int32或者mindspore.int64。 - **updates** (Tensor) - 指定与 `input_x` 相除的Tensor,数据类型与 `input_x` 相同,shape为 `indices.shape + input_x.shape[1:]` 。 - 输出: + 返回: Tensor,更新后的 `input_x` ,shape和类型与 `input_x` 相同。 异常: diff --git a/docs/api/api_python/ops/mindspore.ops.func_scatter_max.rst b/docs/api/api_python/ops/mindspore.ops.func_scatter_max.rst index fcfec63bed2..e4987dc920e 100644 --- a/docs/api/api_python/ops/mindspore.ops.func_scatter_max.rst +++ b/docs/api/api_python/ops/mindspore.ops.func_scatter_max.rst @@ -18,7 +18,7 @@ mindspore.ops.scatter_max - **indices** (Tensor) - 指定最大值操作的索引,数据类型必须为mindspore.int32或者mindspore.int64。 - **updates** (Tensor) - 指定与 `input_x` 取最大值操作的Tensor,数据类型与 `input_x` 相同,shape为 `indices.shape + input_x.shape[1:]` 。 - 输出: + 返回: Tensor,更新后的 `input_x` ,shape和类型与 `input_x` 相同。 异常: diff --git a/docs/api/api_python/ops/mindspore.ops.func_scatter_min.rst b/docs/api/api_python/ops/mindspore.ops.func_scatter_min.rst index bb76cb2aa4a..9d547d74ffb 100644 --- a/docs/api/api_python/ops/mindspore.ops.func_scatter_min.rst +++ b/docs/api/api_python/ops/mindspore.ops.func_scatter_min.rst @@ -18,7 +18,7 @@ mindspore.ops.scatter_min - **indices** (Tensor) - 指定最小值操作的索引,数据类型必须为mindspore.int32或者mindspore.int64。 - **updates** (Tensor) - 指定与 `input_x` 取最小值操作的Tensor,数据类型与 `input_x` 相同,shape为 `indices.shape + input_x.shape[1:]` 。 - 输出: + 返回: Tensor,更新后的 `input_x` ,shape和类型与 `input_x` 相同。 异常: diff --git a/mindspore/python/mindspore/ops/composite/array_ops.py b/mindspore/python/mindspore/ops/composite/array_ops.py index a47cdc1e185..35dcb9bee27 100644 --- a/mindspore/python/mindspore/ops/composite/array_ops.py +++ b/mindspore/python/mindspore/ops/composite/array_ops.py @@ -65,7 +65,7 @@ def repeat_elements(x, rep, axis=0): rep (int): The number of times to repeat, must be positive. axis (int): The axis along which to repeat, default 0. - Outputs: + Returns: One tensor with values repeated along the specified axis. If x has shape (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ..., si * rep, ..., sn). The output type will be the same as the type of `x`. @@ -142,7 +142,7 @@ def sequence_mask(lengths, maxlen=None): maxlen (int): size of the last dimension of returned tensor. Must be positive and same type as elements in `lengths`. Default is None. - Outputs: + Returns: One mask tensor of shape `lengths.shape + (maxlen,)` . Raises: diff --git a/mindspore/python/mindspore/ops/composite/math_ops.py b/mindspore/python/mindspore/ops/composite/math_ops.py index 1f588745bad..2e612726744 100644 --- a/mindspore/python/mindspore/ops/composite/math_ops.py +++ b/mindspore/python/mindspore/ops/composite/math_ops.py @@ -258,7 +258,7 @@ def tensor_dot(x1, x2, axes): automatically picks up last N dims from `a` input shape and first N dims from `b` input shape in order as axes for each respectively. - Outputs: + Returns: Tensor, the shape of the output tensor is :math:`(N + M)`. Where :math:`N` and :math:`M` are the free axes not contracted in both inputs @@ -346,7 +346,7 @@ def dot(x1, x2): x2 (Tensor): Second tensor in Dot op with datatype float16 or float32, The rank must be greater than or equal to 2. - Outputs: + Returns: Tensor, dot product of x1 and x2. Raises: @@ -559,7 +559,7 @@ def batch_dot(x1, x2, axes=None): `a` input shape and last N dimensions from `b` input shape in order as axes for each respectively. Default: None. - Outputs: + Returns: Tensor, batch dot product of `x1` and `x2`. For example: The Shape of output for input `x1` shapes (batch, d1, axes, d2) and `x2` shapes (batch, d3, axes, d4) is (batch, d1, d2, d3, d4), where d1 and d2 means any number. @@ -779,7 +779,7 @@ def resize_nearest_neighbor(input_x, size, align_corners=False): align_corners (bool): Whether the centers of the 4 corner pixels of the input and output tensors are aligned. Default: False. - Outputs: + Returns: Tensor, the shape of the output tensor is :math:`(N, C, NEW\_H, NEW\_W)`. The data type is the same as the `input_x`. diff --git a/mindspore/python/mindspore/ops/function/array_func.py b/mindspore/python/mindspore/ops/function/array_func.py index 27b2877e26c..e17d832a982 100644 --- a/mindspore/python/mindspore/ops/function/array_func.py +++ b/mindspore/python/mindspore/ops/function/array_func.py @@ -1237,7 +1237,7 @@ def squeeze(input_x, axis=()): all the dimensions of size 1 in the given axis parameter. If specified, it must be int32 or int64. Default: (), an empty tuple. - Outputs: + Returns: Tensor, the shape of tensor is :math:`(x_1, x_2, ..., x_S)`. Raises: @@ -1419,7 +1419,7 @@ def scatter_max(input_x, indices, updates): updates (Tensor): The tensor doing the max operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + x.shape[1:]`. - Outputs: + Returns: Tensor, the updated `input_x`, the type and shape same as `input_x`. Raises: @@ -1511,7 +1511,7 @@ def scatter_min(input_x, indices, updates): updates (Tensor): The tensor doing the min operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`. - Outputs: + Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: @@ -1566,7 +1566,7 @@ def scatter_div(input_x, indices, updates): updates (Tensor): The tensor doing the divide operation with `input_x`, the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`. - Outputs: + Returns: Tensor, the updated `input_x`, has the same shape and type as `input_x`. Raises: @@ -3487,7 +3487,7 @@ def index_fill(x, dim, index, value): a Tensor, it must be a 0-dimensional Tensor and has the same dtype as `x`. Otherwise, the `value` will be cast to a 0-dimensional Tensor with the same data type as `x`. - Outputs: + Returns: Tensor, has the same dtype and shape as input Tensor. Raises: diff --git a/mindspore/python/mindspore/ops/function/math_func.py b/mindspore/python/mindspore/ops/function/math_func.py index f3e04cea9c2..c0b6639373a 100644 --- a/mindspore/python/mindspore/ops/function/math_func.py +++ b/mindspore/python/mindspore/ops/function/math_func.py @@ -2123,7 +2123,7 @@ def linspace(start, stop, num): num (int): Number of ticks in the interval, inclusive of start and stop. Must be positive int number. - Outputs: + Returns: Tensor, has the same dtype as `start`, and the shape of :math:`(num)` Raises: @@ -2380,7 +2380,7 @@ def ldexp(x, other): x (Tensor): The input tensor. other (Tensor): A tensor of exponents, typically integers. - Outputs: + Returns: out (Tensor, optional) : the output tensor. Raises: @@ -2600,12 +2600,15 @@ def ge(x, y): r""" Computes the boolean value of :math:`x >= y` element-wise. - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. - The inputs must be two tensors or one tensor and one scalar. - When the inputs are two tensors, - dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast. - When the inputs are one tensor and one scalar, - the scalar could only be a constant. + Note: + - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. + - The inputs must be two tensors or one tensor and one scalar. + - When the inputs are two tensors, dtypes of them cannot be bool at the same time, + and the shapes of them can be broadcast. + - When the inputs are one tensor and one scalar, the scalar could only be a constant. + - Broadcasting is supported. + - If the input Tensor can be broadcast, the low dimension will be extended to the corresponding high dimension + in another input by copying the value of the dimension. .. math:: @@ -2691,10 +2694,12 @@ def ne(x, y): r""" Computes the non-equivalence of two tensors element-wise. - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. - The inputs must be two tensors or one tensor and one scalar. - When the inputs are two tensors, the shapes of them could be broadcast. - When the inputs are one tensor and one scalar, the scalar could only be a constant. + Note: + - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. + - The inputs must be two tensors or one tensor and one scalar. + - When the inputs are two tensors, the shapes of them could be broadcast. + - When the inputs are one tensor and one scalar, the scalar could only be a constant. + - Broadcasting is supported. .. math:: @@ -2757,7 +2762,7 @@ def approximate_equal(x, y, tolerance=1e-5): y (Tensor): A tensor of the same type and shape as `x`. tolerance (float): The maximum deviation that two elements can be considered equal. Default: 1e-05. - Outputs: + Returns: Tensor, the shape is the same as the shape of `x`, and the data type is bool. Raises: @@ -2964,13 +2969,15 @@ def maximum(x, y): """ Computes the maximum of input tensors element-wise. - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. - The inputs must be two tensors or one tensor and one scalar. - When the inputs are two tensors, - dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast. - When the inputs are one tensor and one scalar, - the scalar could only be a constant. - If one of the elements being compared is a NaN, then that element is returned. + Note: + - Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent. + - The inputs must be two tensors or one tensor and one scalar. + - When the inputs are two tensors, + dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast. + - When the inputs are one tensor and one scalar, + the scalar could only be a constant. + - Broadcasting is supported. + - If one of the elements being compared is a NaN, then that element is returned. .. math:: output_i = max(x_i, y_i) @@ -3416,7 +3423,7 @@ def mv(mat, vec): mat (Tensor): Input matrix of the tensor. The shape of the tensor is :math:`(N, M)`. vec (Tensor): Input vector of the tensor. The shape of the tensor is :math:`(M,)`. - Outputs: + Returns: Tensor, the shape of the output tensor is :math:`(N,)`. Raises: @@ -3478,7 +3485,7 @@ def addmv(x, mat, vec, beta=1, alpha=1): alpha (scalar[int, float, bool], optional): Multiplier for `mat` @ `vec` (α). The `alpha` must be int or float or bool, Default: 1. - Outputs: + Returns: Tensor, the shape of the output tensor is :math:`(N,)`, has the same dtype as `x`. Raises: @@ -3838,7 +3845,7 @@ def deg2rad(x): x (Tensor[Number]): The input tensor. It must be a positive-definite matrix. With float16, float32 or float64 data type. - Outputs: + Returns: Tensor, has the same dtype as the `x`. Raises: @@ -3876,7 +3883,7 @@ def rad2deg(x): Args: x (Tensor): The input tensor. - Outputs: + Returns: Tensor, has the same shape and dtype as the `x`. Raises: @@ -4127,7 +4134,7 @@ def logsumexp(x, axis, keep_dims=False): If False, don't keep these dimensions. Default : False. - Outputs: + Returns: Tensor, has the same dtype as the `x`. - If axis is (), and keep_dims is False, @@ -5020,7 +5027,7 @@ def log2(x): Args: x (Tensor): Input Tensor of any dimension. The value must be greater than 0. - Outputs: + Returns: Tensor, has the same shape and dtype as the `x`. Raises: @@ -5195,7 +5202,7 @@ def log10(x): Args: x (Tensor): Input Tensor of any dimension. The value must be greater than 0. - Outputs: + Returns: Tensor, has the same shape and dtype as the `x`. Raises: @@ -5474,9 +5481,9 @@ def remainder(x, y): y (Union[Tensor, numbers.Number, bool]): When the first input is a tensor, The second input could be a number, a bool or a tensor whose data type is number. - Outputs: + Returns: Tensor, the shape is the same as the one after broadcasting, - and the data type is the one with higher precision or higher digits among the two inputs. + and the data type is the one with higher precision or higher digits among the two inputs. Raises: TypeError: If neither `x` nor `y` is one of the following: Tensor, number, bool. diff --git a/mindspore/python/mindspore/ops/function/nn_func.py b/mindspore/python/mindspore/ops/function/nn_func.py index aae77e4abc4..70a433b71a6 100644 --- a/mindspore/python/mindspore/ops/function/nn_func.py +++ b/mindspore/python/mindspore/ops/function/nn_func.py @@ -843,7 +843,7 @@ def softsign(x): x (Tensor): Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions, with float16 or float32 data type. - Outputs: + Returns: Tensor, with the same type and shape as the `x`. Raises: @@ -921,7 +921,7 @@ def soft_shrink(x, lambd=0.5): x (Tensor): The input of soft shrink with data type of float16 or float32. lambd(float): The :math:`\lambda` must be no less than zero. Default: 0.5. - Outputs: + Returns: Tensor, has the same shape and data type as `x`. Raises: @@ -1236,9 +1236,9 @@ def mirror_pad(input_x, paddings, mode): Pads the input tensor according to the paddings and mode. Args: - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of + input_x (Tensor): Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions. - **paddings** (Tensor) - Paddings requires constant tensor. The value of `paddings` is a + paddings (Tensor): Paddings requires constant tensor. The value of `paddings` is a matrix(list), and its shape is (N, 2). N is the rank of input data. All elements of paddings are int type. For the input in the `D` th dimension, paddings[D, 0] indicates how many sizes to be extended ahead of the input tensor in the `D` th dimension, and paddings[D, 1] @@ -1248,8 +1248,7 @@ def mirror_pad(input_x, paddings, mode): mode (str): Specifies the padding mode. The optional values are "REFLECT" and "SYMMETRIC". Default: "REFLECT". - - Outputs: + Returns: Tensor, the tensor after padding. - If `mode` is "REFLECT", it uses a way of symmetrical copying through the axis of symmetry to fill in. @@ -1366,7 +1365,6 @@ def cross_entropy(inputs, target, weight=None, ignore_index=-100, reduction='mea ``Ascend`` ``GPU`` ``CPU`` Examples: - >>> # Case 1: Indices labels >>> inputs = mindspore.Tensor(np.random.randn(3, 5), mindspore.float32) >>> target = mindspore.Tensor(np.array([1, 0, 4]), mindspore.int32) @@ -1447,7 +1445,7 @@ def nll_loss(inputs, target, weight=None, ignore_index=-100, reduction='mean', l label_smoothing (float): Label smoothing values, a regularization tool used to prevent the model from overfitting when calculating Loss. The value range is [0.0, 1.0]. Default value: 0.0. - Outputs: + Returns: Tensor, the computed loss value. Supported Platforms: @@ -1638,7 +1636,7 @@ def log_softmax(logits, axis=-1): additional dimensions, with float16 or float32 data type. axis (int): The axis to perform the Log softmax operation. Default: -1. - Outputs: + Returns: Tensor, with the same type and shape as the logits. Raises: @@ -1845,7 +1843,7 @@ def grid_sample(input_x, grid, interpolation_mode='bilinear', padding_mode='zero to the corner points of the input’s corner pixels, making the sampling more resolution agnostic. Default: `False`. - Outputs: + Returns: Tensor, dtype is the same as `input_x` and whose shape is :math:`(N, C, H_{out}, W_{out})` (4-D) and :math:`(N, C, D_{out}, H_{out}, W_{out})` (5-D).