Update testcases for initilizers

This commit is contained in:
shaojunsong 2022-10-13 19:43:34 +08:00
parent 65e919ebc7
commit 6aed4b36ab
1 changed files with 75 additions and 15 deletions

View File

@ -15,37 +15,69 @@
import mindspore
from mindspore.common.initializer import initializer, Identity, Dirac, Sparse, VarianceScaling, Orthogonal
from mindspore import context
import mindspore.ops as ops
import numpy as np
import pytest
def test_sparse():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_sparse(mode):
"""
Feature: Test sparse initializer.
Description: Initialize a 2 dimension sparse matrix to fill the input tensor.
Expectation: The Tensor is initialized with a 2 dimension sparse matrix.
"""
tensor1 = initializer(Sparse(sparsity=0.1, sigma=0.01), [5, 8], mindspore.float32)
tensor1.init_data()
context.set_context(mode=mode)
tensor1 = initializer(Sparse(sparsity=0.2, sigma=0.01), [5, 6], mindspore.float32)
output = tensor1.init_data()
assert np.array_equal(np.count_nonzero(output.asnumpy(), axis=0), [4, 4, 4, 4, 4, 4])
def test_orthogonal():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_orthogonal(mode):
"""
Feature: Test orthogonal initializer.
Description: Initialize a (semi) orthogonal matrix to fill the input tensor.
Expectation: The Tensor is initialized with values from orthogonal matrix.
"""
tensor1 = initializer(Orthogonal(gain=2.), [2, 3, 4], mindspore.float32)
tensor2 = initializer('orthogonal', [2, 3, 4], mindspore.float32)
tensor1.init_data()
tensor2.init_data()
context.set_context(mode=mode)
identity = np.identity(2)
tensor1 = initializer(Orthogonal(gain=1.), [2, 2], mindspore.float32)
t1 = tensor1.init_data()
transpose = t1.transpose()
mul = ops.MatMul()
output = mul(t1, transpose)
assert np.allclose(output.asnumpy(), identity, atol=1e-6, rtol=1e-7)
def test_variancescaling():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_variancescaling(mode):
"""
Feature: Test varianceScaling initializer.
Description: Randomly initialize an array with scaling to fill the input tensor.
Expectation: The Tensor is initialized successfully.
"""
context.set_context(mode=mode)
mindspore.set_seed(0)
tensor1 = initializer('varianceScaling', [2, 3], mindspore.float32)
tensor2 = initializer(VarianceScaling(scale=1.0, mode='fan_out', distribution='untruncated_normal'), [2, 3],
mindspore.float32)
@ -53,18 +85,38 @@ def test_variancescaling():
mindspore.float32)
tensor4 = initializer(VarianceScaling(scale=3.0, mode='fan_avg', distribution='uniform'), [2, 3],
mindspore.float32)
tensor1.init_data()
tensor2.init_data()
tensor3.init_data()
tensor4.init_data()
t1 = tensor1.init_data()
expected_t1 = np.array([[0.49535394, -0.03666719, 0.23151064],
[-0.08424897, 0.39260703, -0.26104233]])
t2 = tensor2.init_data()
expected_t2 = np.array([[1.2710124e+00, 1.2299923e-03, -1.1589712e+00],
[1.1465757e+00, -2.2482322e-01, 9.2637345e-02]])
t3 = tensor3.init_data()
expected_t3 = np.array([[1.2023407, -0.9182362, 0.20436235],
[0.8581208, 1.0288558, 1.0927733]])
t4 = tensor4.init_data()
expected_t4 = np.array([[1.2470493, -1.0861205, -1.1339132],
[-0.07604776, -1.8196303, 0.5115674]])
assert np.allclose(t1.asnumpy(), expected_t1)
assert np.allclose(t2.asnumpy(), expected_t2)
assert np.allclose(t3.asnumpy(), expected_t3)
assert np.allclose(t4.asnumpy(), expected_t4)
def test_identity():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_identity(mode):
"""
Feature: Test identity initializer.
Description: Initialize an identity matrix to fill a Tensor.
Expectation: The Tensor is initialized with identity matrix.
"""
context.set_context(mode=mode)
tensor1 = initializer(Identity(), [3, 3], mindspore.float32)
tensor2 = initializer('identity', [3, 4], mindspore.float32)
tensor3 = initializer('identity', [4, 3], mindspore.float32)
@ -76,12 +128,20 @@ def test_identity():
assert (tensor3.asnumpy() == expect3).all()
def test_dirac():
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_dirac(mode):
"""
Feature: Test dirac initializer.
Description: Initialize input tensor with the Dirac delta function.
Expectation: The Tensor is correctly initialized.
"""
context.set_context(mode=mode)
tensor3_1 = initializer(Dirac(groups=1), [6, 2, 3], mindspore.float32)
tensor3_2 = initializer(Dirac(groups=2), [6, 2, 3], mindspore.float32)
tensor3_3 = initializer(Dirac(groups=3), [6, 2, 3], mindspore.float32)