!31584 [feat][assistant][I48O63] add checknumerics
Merge pull request !31584 from 郑鹏飞/checknumerics
This commit is contained in:
commit
68b3a906dc
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/check_numerics_cpu_kernel.h"
|
||||
#include <cmath>
|
||||
#include "abstract/utils.h"
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
constexpr size_t kCheckNumericsInputsNum = 1;
|
||||
constexpr size_t kCheckNumericsOutputsNum = 1;
|
||||
} // namespace
|
||||
|
||||
void CheckNumericsCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
|
||||
input_dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
|
||||
if (dtype_map_.find(input_dtype_) == dtype_map_.end()) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_
|
||||
<< "', the dtype of 'x' should be float16, float32 or float64, but got: " << input_dtype_;
|
||||
}
|
||||
}
|
||||
|
||||
bool CheckNumericsCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kCheckNumericsInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kCheckNumericsOutputsNum, kernel_name_);
|
||||
if (input_dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernelFloat<float16>(inputs, outputs);
|
||||
} else if (input_dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernelFloat<float>(inputs, outputs);
|
||||
} else if (input_dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernelFloat<double>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CheckNumericsCpuKernelMod::CheckNanOrInf(T value) {
|
||||
if (std::isnan(value)) {
|
||||
MS_LOG(EXCEPTION) << ": Tensor had NaN values";
|
||||
} else if (std::isinf(value)) {
|
||||
MS_LOG(EXCEPTION) << ": Tensor had Inf values";
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CheckNumericsCpuKernelMod::LaunchKernelFloat(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
T *input = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
size_t elem_num = inputs[0]->size / sizeof(T);
|
||||
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
if constexpr (std::is_same_v<T, float16>) {
|
||||
auto value = static_cast<float>(input[i]);
|
||||
CheckNanOrInf(value);
|
||||
output[i] = input[i];
|
||||
} else {
|
||||
auto value = input[i];
|
||||
CheckNanOrInf(value);
|
||||
output[i] = input[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, CheckNumerics, CheckNumericsCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,63 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CHECK_NUMERICS_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CHECK_NUMERICS_CPU_KERNEL_H_
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <complex>
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class CheckNumericsCpuKernelMod : public DeprecatedNativeCpuKernelMod {
|
||||
public:
|
||||
CheckNumericsCpuKernelMod() = default;
|
||||
~CheckNumericsCpuKernelMod() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernelNode) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64)};
|
||||
return support_list;
|
||||
}
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void LaunchKernelFloat(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
template <typename T>
|
||||
void CheckNanOrInf(T value);
|
||||
|
||||
std::map<TypeId, size_t> dtype_map_ = {
|
||||
{kNumberTypeFloat16, sizeof(float16)}, {kNumberTypeFloat32, sizeof(float)}, {kNumberTypeFloat64, sizeof(double)}};
|
||||
TypeId input_dtype_{kTypeUnknown};
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CHECK_NUMERICS_CPU_KERNEL_H_
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ops/check_numerics.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include "ops/op_utils.h"
|
||||
#include "mindapi/src/helper.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/ops/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr CheckNumericsInferShape(const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
return std::make_shared<abstract::Shape>(x_shape);
|
||||
}
|
||||
|
||||
TypePtr CheckNumericsInferType(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto prim_name = primitive->name();
|
||||
(void)CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, 0);
|
||||
auto x_dtype = input_args[0]->BuildType();
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32, kFloat64};
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_dtype, valid_types, primitive->name());
|
||||
return x_dtype;
|
||||
}
|
||||
} // namespace
|
||||
AbstractBasePtr CheckNumericsInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const int64_t kInputNum = 1;
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kGreaterEqual, kInputNum, primitive->name());
|
||||
auto infer_type = CheckNumericsInferType(primitive, input_args);
|
||||
auto infer_shape = CheckNumericsInferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(infer_shape, infer_type);
|
||||
}
|
||||
MIND_API_BASE_IMPL(CheckNumerics, PrimitiveC, BaseOperator);
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(CheckNumerics, prim::kPrimCheckNumerics, CheckNumericsInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_CHECKNUMERICS_H_
|
||||
#define MINDSPORE_CORE_OPS_CHECKNUMERICS_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameCheckNumerics = "CheckNumerics";
|
||||
|
||||
class CheckNumerics : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(CheckNumerics);
|
||||
CheckNumerics() : BaseOperator(kNameCheckNumerics) { InitIOName({"x"}, {"y"}); }
|
||||
};
|
||||
|
||||
abstract::AbstractBasePtr CheckNumericsInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimCheckNumericsPtr = std::shared_ptr<CheckNumerics>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_CHECKNUMERICS_H_
|
|
@ -109,6 +109,7 @@ constexpr auto kSegmentSum = "SegmentSum";
|
|||
constexpr auto kSegmentMin = "SegmentMin";
|
||||
constexpr auto kDynamicShape = "DynamicShape";
|
||||
constexpr auto kTensorShape = "TensorShape";
|
||||
constexpr auto kCheckNumerics = "CheckNumerics";
|
||||
constexpr auto kStack = "Stack";
|
||||
constexpr auto kUnstack = "Unstack";
|
||||
constexpr auto kTupleGetItem = "TupleGetItem";
|
||||
|
@ -330,6 +331,7 @@ GVAR_DEF(PrimitivePtr, kPrimStridedSlice, std::make_shared<Primitive>(kStridedSl
|
|||
GVAR_DEF(PrimitivePtr, kPrimStridedSliceGrad, std::make_shared<Primitive>(kStridedSliceGrad));
|
||||
GVAR_DEF(PrimitivePtr, kPrimTensorShape, std::make_shared<Primitive>(kTensorShape));
|
||||
GVAR_DEF(PrimitivePtr, kPrimDynamicShape, std::make_shared<Primitive>(kDynamicShape));
|
||||
GVAR_DEF(PrimitivePtr, kPrimCheckNumerics, std::make_shared<Primitive>(kCheckNumerics));
|
||||
GVAR_DEF(PrimitivePtr, kPrimEmbeddingLookup, std::make_shared<Primitive>("EmbeddingLookup"));
|
||||
GVAR_DEF(PrimitivePtr, kPrimEmbeddingLookupCommGrad, std::make_shared<Primitive>("EmbeddingLookupCommGrad"));
|
||||
GVAR_DEF(PrimitivePtr, kPrimSize, std::make_shared<Primitive>("Size"));
|
||||
|
|
|
@ -26,6 +26,7 @@ from ..operations.array_ops import MatrixDiagV3
|
|||
from ..operations.array_ops import MatrixDiagPartV3
|
||||
from ..operations.array_ops import MatrixSetDiagV3
|
||||
from ..operations.array_ops import Triu
|
||||
from ..operations.array_ops import CheckNumerics
|
||||
from ..operations.array_ops import SegmentMax
|
||||
from ..operations.array_ops import SegmentMin
|
||||
from ..operations.array_ops import SegmentSum
|
||||
|
@ -227,6 +228,17 @@ def get_bprop_triu(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(CheckNumerics)
|
||||
def get_bprop_check_numerics(self):
|
||||
"""Generate bprop for CheckNumerics"""
|
||||
check_numerics = CheckNumerics()
|
||||
|
||||
def bprop(x_input, out, dout):
|
||||
return (check_numerics(dout),)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.SplitV)
|
||||
def get_bprop_split_v(self):
|
||||
"""Generate bprop for SplitV"""
|
||||
|
|
|
@ -156,6 +156,7 @@ from .environ_set import _environ_set_aicpu
|
|||
from .environ_get import _environ_get_aicpu
|
||||
from .environ_destroy_all import _environ_destroy_all_aicpu
|
||||
from .cross import _cross_aicpu
|
||||
from .check_numerics import _check_numerics_aicpu
|
||||
from .cummax import _cummax_aicpu
|
||||
from .round import _round_aicpu
|
||||
from .truncated_normal import _truncated_normal_aicpu
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""CheckNumerics op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
check_numerics_op_info = AiCPURegOp("CheckNumerics") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("message", "str") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(check_numerics_op_info)
|
||||
def _check_numerics_aicpu():
|
||||
"""CheckNumerics AiCPU register"""
|
||||
return
|
|
@ -10,7 +10,6 @@
|
|||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
|
@ -250,6 +249,38 @@ class SameTypeShape(PrimitiveWithInfer):
|
|||
return x
|
||||
|
||||
|
||||
class CheckNumerics(Primitive):
|
||||
"""
|
||||
Checks a tensor for NaN and Inf values.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - Input Tensor of any dimension. The data type is float16, float32 or float64.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and data type as `x` if `x` has no nan or inf values.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` data type is not float16, float32, float64.
|
||||
RuntimeError: If `x` has nan or inf values.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([[1, 3], [2, 4]], dtype=np.float32))
|
||||
>>> checknumerics = ops.CheckNumerics()
|
||||
>>> output = checknumerics(x)
|
||||
>>> print(output)
|
||||
[[1. 3.]
|
||||
[2. 4.]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CheckNumerics"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
|
||||
|
||||
class Cast(PrimitiveWithInfer):
|
||||
"""
|
||||
Returns a tensor with the new specified data type.
|
||||
|
|
|
@ -37,6 +37,7 @@ from mindspore.ops.operations.math_ops import ReduceStd
|
|||
from mindspore.ops.operations.math_ops import Trace
|
||||
from mindspore.ops.operations import nn_ops as nps
|
||||
from mindspore.ops.operations.array_ops import Tril
|
||||
from mindspore.ops.operations.array_ops import CheckNumerics
|
||||
from mindspore.ops.operations.array_ops import SegmentMax
|
||||
from mindspore.ops.operations.array_ops import SegmentMin
|
||||
from mindspore.ops.operations.array_ops import SegmentSum
|
||||
|
@ -2768,6 +2769,10 @@ test_case_array_ops = [
|
|||
'block': P.Shape(),
|
||||
'desc_inputs': [[3, 3, 2, 2]],
|
||||
'skip': ['backward']}),
|
||||
('CheckNumerics', {
|
||||
'block': CheckNumerics(),
|
||||
'desc_inputs': [[1, 2, 3, 4]],
|
||||
'skip': ['backward']}),
|
||||
('Reshape', {
|
||||
'block': P.Reshape(),
|
||||
'desc_const': [(64,)],
|
||||
|
|
Loading…
Reference in New Issue