From 93557390ba2d03d1e038f1f8f01baced53e3a7c4 Mon Sep 17 00:00:00 2001 From: mengyuanli Date: Tue, 5 Jul 2022 19:43:56 +0800 Subject: [PATCH] 1.add smooth_l1_loss_v2 tbe op --- .../nn/mindspore.nn.SmoothL1Loss.rst | 7 +- .../ops/mindspore.ops.func_smooth_l1_loss.rst | 7 +- mindspore/python/mindspore/nn/loss/loss.py | 9 +- .../ops/_op_impl/tbe/smooth_l1_loss.py | 7 +- .../ops/_op_impl/tbe/smooth_l1_loss_ds.py | 7 +- .../ops/_op_impl/tbe/smooth_l1_loss_grad.py | 7 +- .../_op_impl/tbe/smooth_l1_loss_grad_ds.py | 7 +- .../python/mindspore/ops/function/nn_func.py | 3 +- .../python/mindspore/ops/operations/nn_ops.py | 4 - .../test_tbe_ops/test_smooth_l1_loss.py | 65 +++++++--- .../test_tbe_ops/test_smooth_l1_loss_grad.py | 122 ++++++++++++++---- 11 files changed, 174 insertions(+), 71 deletions(-) diff --git a/docs/api/api_python/nn/mindspore.nn.SmoothL1Loss.rst b/docs/api/api_python/nn/mindspore.nn.SmoothL1Loss.rst index d1d3c2dc3f7..5f7c4197217 100644 --- a/docs/api/api_python/nn/mindspore.nn.SmoothL1Loss.rst +++ b/docs/api/api_python/nn/mindspore.nn.SmoothL1Loss.rst @@ -26,7 +26,7 @@ mindspore.nn.SmoothL1Loss 其中,:math:`{\beta}` 代表阈值 `beta` 。 .. note:: - - 在Ascend上, 目前不支持将 `reduction` 设定成'sum'或'mean'。 + - 在Ascend上,目前不支持 `logits` 的数据类型是float64。 - SmoothL1Loss可以看成 :class:`mindspore.nn.L1Loss` 的修改版本,也可以看成 :class:`mindspore.nn.L1Loss` 和 :class:`mindspore.ops.L2Loss` 的组合。 - :class:`mindspore.nn.L1Loss` 计算两个输入Tensor之间的绝对误差,而 :class:`mindspore.ops.L2Loss` 计算两个输入Tensor之间的平方误差。 - :class:`mindspore.ops.L2Loss` 通常更快收敛,但对离群值的鲁棒性较差。该损失函数具有较好的鲁棒性。 @@ -36,7 +36,7 @@ mindspore.nn.SmoothL1Loss - **reduction** (str) - 缩减输出的方法。默认值:'none'。其他选项:'mean'和'sum'。 输入: - - **logits** (Tensor) - 预测值,任意维度Tensor。数据类型为float16、float32或float64。 + - **logits** (Tensor) - 预测值,任意维度Tensor。数据类型为float16或float32, CPU和GPU后端还支持float64。 - **labels** (Tensor) - 目标值,数据类型和shape与 `logits` 相同的Tensor。 输出: @@ -48,5 +48,6 @@ mindspore.nn.SmoothL1Loss - **TypeError** - `logits` 或 `labels` 不是Tensor。 - **TypeError** - `logits` 或 `labels` 的数据类型不是float16,float32和float64中的任一者。 - **TypeError** - `logits` 的数据类型与 `labels` 不同。 - - **ValueError** - `beta` 小于或等于0。 + - **ValueError** - `beta` 小于0。 - **ValueError** - `logits` 的shape与 `labels` 不同。 + - **TypeError** - Ascend后端不支持数据类型是float64的 `logits` 输入。 diff --git a/docs/api/api_python/ops/mindspore.ops.func_smooth_l1_loss.rst b/docs/api/api_python/ops/mindspore.ops.func_smooth_l1_loss.rst index ffd4c9168c5..eb4a35288dc 100644 --- a/docs/api/api_python/ops/mindspore.ops.func_smooth_l1_loss.rst +++ b/docs/api/api_python/ops/mindspore.ops.func_smooth_l1_loss.rst @@ -28,10 +28,10 @@ mindspore.ops.smooth_l1_loss 其中, :math:`\beta` 代表阈值 `beta` 。 :math:`N` 为batch size。 .. note:: - 在Ascend上,目前不支持将 `reduction` 设定成'sum'或'mean'。 + 在Ascend上,目前不支持 `logits` 的数据类型是float64。 参数: - - **logits** (Tensor) - shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。数据类型支持float16、float32或float64。 + - **logits** (Tensor) - shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。数据类型为float16或float32, CPU和GPU后端还支持float64。 - **labels** (Tensor) - shape: :math:`(N, *)` ,与 `logits` 的shape和数据类型相同。 - **beta** (float) - 控制损失函数在L1Loss和L2Loss间变换的阈值。默认值:1.0。 - **reduction** (str) - 缩减输出的方法。默认值:'none'。 其他选项:'mean'和'sum'。 @@ -43,5 +43,6 @@ mindspore.ops.smooth_l1_loss - **TypeError** - `beta` 不是float类型。 - **ValueError** - `reduction` 不是'none','mean'和'sum'中的任一者。 - **TypeError** - `logits` 或 `labels` 的数据类型不是float16,float32和float64中的任一者。 - - **ValueError** - `beta` 小于或等于0。 + - **ValueError** - `beta` 小于0。 - **ValueError** - `logits` 与 `labels` 的shape不同。 + - **TypeError** - Ascend后端不支持数据类型是float64的 `logits` 输入。 diff --git a/mindspore/python/mindspore/nn/loss/loss.py b/mindspore/python/mindspore/nn/loss/loss.py index e2867ac27a2..e48655c45be 100644 --- a/mindspore/python/mindspore/nn/loss/loss.py +++ b/mindspore/python/mindspore/nn/loss/loss.py @@ -481,7 +481,7 @@ class SmoothL1Loss(LossBase): \end{cases} .. note:: - For Ascend platform, the 'reduction' is not support set to 'sum' or 'mean'. + For Ascend platform, the float64 data type of `logits` is not support now. SmoothL1Loss can be regarded as modified version of L1Loss or a combination of L1Loss and L2Loss. L1Loss computes the element-wise absolute difference between two input tensors while L2Loss computes the squared difference between two input tensors. L2Loss often leads to faster convergence but it is less @@ -510,6 +510,7 @@ class SmoothL1Loss(LossBase): TypeError: If dtype of `logits` is not the same as `labels`. ValueError: If `beta` is less than or equal to 0. ValueError: If shape of `logits` is not the same as `labels`. + ValueError: The float64 data type of `logits` is support on Ascend platform. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` @@ -526,17 +527,11 @@ class SmoothL1Loss(LossBase): def __init__(self, beta=1.0, reduction='none'): """Initialize SmoothL1Loss.""" super(SmoothL1Loss, self).__init__(reduction) - target = context.get_context("device_target") - if reduction != 'none' and target.lower() == "ascend": - raise ValueError(f"Currently Ascend device_target only support `reduction`='none', " - f"but got {reduction}") self.beta = beta self.reduction = reduction self.smooth_l1_loss = P.SmoothL1Loss(self.beta, self.reduction) def construct(self, logits, labels): - _check_is_tensor('logits', logits, self.cls_name) - _check_is_tensor('labels', labels, self.cls_name) return self.smooth_l1_loss(logits, labels) diff --git a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss.py b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss.py index 4159346b7e7..1cbca8b0224 100644 --- a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +++ b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss.py @@ -19,11 +19,12 @@ from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType smooth_l1_loss_op_info = TBERegOp("SmoothL1Loss") \ .fusion_type("OPAQUE") \ .async_flag(False) \ - .binfile_name("smooth_l1_loss.so") \ + .binfile_name("smooth_l1_loss_v2.so") \ .compute_cost(10) \ - .kernel_name("smooth_l1_loss") \ + .kernel_name("smooth_l1_loss_v2") \ .partial_flag(True) \ - .attr("beta", "required", "float", "all") \ + .attr("beta", "optional", "float", "all") \ + .attr("reduction", "optional", "str", "all") \ .input(0, "predict", False, "required", "all") \ .input(1, "label", False, "required", "all") \ .output(0, "loss", False, "required", "all") \ diff --git a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py index 94ee5daa4b4..2a51ed20fac 100644 --- a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +++ b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py @@ -19,12 +19,13 @@ from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType smooth_l1_loss_op_info = TBERegOp("SmoothL1Loss") \ .fusion_type("OPAQUE") \ .async_flag(False) \ - .binfile_name("smooth_l1_loss.so") \ + .binfile_name("smooth_l1_loss_v2.so") \ .compute_cost(10) \ - .kernel_name("smooth_l1_loss") \ + .kernel_name("smooth_l1_loss_v2") \ .partial_flag(True) \ .dynamic_shape(True) \ - .attr("beta", "required", "float", "all") \ + .attr("beta", "optional", "float", "all") \ + .attr("reduction", "optional", "str", "all") \ .input(0, "predict", False, "required", "all") \ .input(1, "label", False, "required", "all") \ .output(0, "loss", False, "required", "all") \ diff --git a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py index db7be64b418..bcbfc8e9c2f 100644 --- a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +++ b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py @@ -19,11 +19,12 @@ from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType smooth_l1_loss_grad_op_info = TBERegOp("SmoothL1LossGrad") \ .fusion_type("OPAQUE") \ .async_flag(False) \ - .binfile_name("smooth_l1_loss_grad.so") \ + .binfile_name("smooth_l1_loss_grad_v2.so") \ .compute_cost(10) \ - .kernel_name("smooth_l1_loss_grad") \ + .kernel_name("smooth_l1_loss_grad_v2") \ .partial_flag(True) \ - .attr("beta", "required", "float", "all") \ + .attr("beta", "optional", "float", "all") \ + .attr("reduction", "optional", "str", "all") \ .input(0, "predict", False, "required", "all") \ .input(1, "label", False, "required", "all") \ .input(2, "dout", False, "required", "all") \ diff --git a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py index f055b2f9ef5..2956da7545a 100644 --- a/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +++ b/mindspore/python/mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py @@ -19,12 +19,13 @@ from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType smooth_l1_loss_grad_op_info = TBERegOp("SmoothL1LossGrad") \ .fusion_type("OPAQUE") \ .async_flag(False) \ - .binfile_name("smooth_l1_loss_grad.so") \ + .binfile_name("smooth_l1_loss_grad_v2.so") \ .compute_cost(10) \ - .kernel_name("smooth_l1_loss_grad") \ + .kernel_name("smooth_l1_loss_grad_v2") \ .partial_flag(True) \ .dynamic_shape(True) \ - .attr("beta", "required", "float", "all") \ + .attr("beta", "optional", "float", "all") \ + .attr("reduction", "optional", "str", "all") \ .input(0, "predict", False, "required", "all") \ .input(1, "label", False, "required", "all") \ .input(2, "dout", False, "required", "all") \ diff --git a/mindspore/python/mindspore/ops/function/nn_func.py b/mindspore/python/mindspore/ops/function/nn_func.py index 0007fe65961..4129c1dda1e 100644 --- a/mindspore/python/mindspore/ops/function/nn_func.py +++ b/mindspore/python/mindspore/ops/function/nn_func.py @@ -1548,7 +1548,7 @@ def smooth_l1_loss(logits, labels, beta=1.0, reduction='none'): Its default value is 1.0. :math:`N` is the batch size. Note: - For Ascend platform, the 'reduction' is not support set to 'sum' or 'mean' for now. + For Ascend platform, the float64 data type of `logits` is not support now. Args: logits (Tensor): Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions. @@ -1567,6 +1567,7 @@ def smooth_l1_loss(logits, labels, beta=1.0, reduction='none'): TypeError: If dtype of `logits` or `labels` is neither float16 nor float32. ValueError: If `beta` is less than or equal to 0. ValueError: If shape of `logits` is not the same as `labels`. + TypeError: The float64 data type of `logits` is support on Ascend platform. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` diff --git a/mindspore/python/mindspore/ops/operations/nn_ops.py b/mindspore/python/mindspore/ops/operations/nn_ops.py index cbee88dbec3..2eecdcc62e0 100644 --- a/mindspore/python/mindspore/ops/operations/nn_ops.py +++ b/mindspore/python/mindspore/ops/operations/nn_ops.py @@ -2957,10 +2957,6 @@ class SmoothL1Loss(Primitive): validator.check_string( reduction, ['none', 'sum', 'mean'], 'reduction', self.name) self.init_prim_io_names(inputs=['prediction', 'target'], outputs=['output']) - target = context.get_context("device_target") - if reduction != 'none' and target.lower() == "ascend": - raise ValueError(f"Currently Ascend device_target only support `reduction`='none', " - f"but got {reduction}") class MultiMarginLoss(Primitive): diff --git a/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py b/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py index 9335bace876..36e008f695b 100644 --- a/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py +++ b/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss.py @@ -14,31 +14,62 @@ # ============================================================================ import numpy as np +import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor -from mindspore.ops import operations as P + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") -class Net(nn.Cell): - def __init__(self, sigma=1.0): - super(Net, self).__init__() - self.SmoothL1Loss = P.SmoothL1Loss(sigma) +def smoothl1loss(beta, reduction): + np.random.seed(42) + prediction = np.random.randn(20).astype(np.float32) + target = np.random.randn(20).astype(np.float32) - def construct(self, pred, gt): - return self.SmoothL1Loss(pred, gt) + net = nn.SmoothL1Loss(beta, reduction) + return net(Tensor(prediction), Tensor(target)) -def test_net(): - pred = np.random.randn(2, 4).astype(np.float32) - gt = np.random.randn(2, 4).astype(np.float32) - smooth_l1_loss = Net() - loss = smooth_l1_loss(Tensor(pred), Tensor(gt)) - print("------------- input ---------------") - print("predict:\n", pred) - print("grount truth:\n", gt) - print("------------- output ---------------") - print("loss:\n", loss.asnumpy()) +def verify_forward(reduction, loss, expect): + if reduction == 'none': + np.testing.assert_array_almost_equal(loss, expect) + elif reduction == "sum": + expect_sum = np.sum(expect) + np.testing.assert_array_almost_equal(loss, expect_sum, decimal=5) + elif reduction == "mean": + expect_mean = np.mean(expect) + np.testing.assert_array_almost_equal(loss, expect_mean) + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +@pytest.mark.parametrize("reduction", ['none', 'mean', 'sum']) +def test_smoothl1loss(reduction): + """ + Feature: SmoothL1Loss cpu kernel. + Description: test the rightness of SmoothL1Loss cpu kernel. + Expectation: the output is same as expect. + """ + + beta = 1.0 + loss = smoothl1loss(beta, reduction) + expect = np.array([0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304, + 2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008, + 0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174, + 0.08826803, 1.109165]) + + verify_forward(reduction, loss.asnumpy(), expect) + + beta = 1 / 9 + loss = smoothl1loss(beta, reduction) + expect = np.array([0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504, + 2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524, + 0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619, + 0.3646064, 1.5536094]) + + verify_forward(reduction, loss.asnumpy(), expect) diff --git a/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py b/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py index a69329a4067..fc0bacdd9ca 100644 --- a/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py +++ b/tests/st/ops/ascend/test_tbe_ops/test_smooth_l1_loss_grad.py @@ -14,44 +14,118 @@ # ============================================================================ import numpy as np +import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor -from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") -class Net(nn.Cell): - def __init__(self, sigma=1.0): - super(Net, self).__init__() - self.SmoothL1Loss = P.SmoothL1Loss(sigma) - - def construct(self, pred, gt): - return self.SmoothL1Loss(pred, gt) - - class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network - def construct(self, pred, gt, dout): - return self.grad(self.network)(pred, gt, dout) + def construct(self, x1, x2, sens): + gout = self.grad(self.network)(x1, x2, sens) + return gout -def test_net(): - pred = np.random.randn(2, 4).astype(np.float32) - gt = np.random.randn(2, 4).astype(np.float32) - dout = np.random.randn(2, 4).astype(np.float32) - smooth_l1_loss_grad = Grad(Net()) - output = smooth_l1_loss_grad(Tensor(pred), Tensor(gt), Tensor(dout)) - print("------------- input ---------------") - print("predict:\n", pred) - print("grount truth:\n", gt) - print("dout:\n", dout) - print("------------- output ---------------") - print("predict grad:\n", output[0].asnumpy()) +def smoothl1loss_grad(beta): + np.random.seed(42) + prediction = np.random.randn(20).astype(np.float32) + target = np.random.randn(20).astype(np.float32) + sens = np.random.randn(20).astype(np.float32) + + net = nn.SmoothL1Loss(beta) + grad = Grad(net) + return grad(Tensor(prediction), Tensor(target), Tensor(sens)) + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_smoothl1loss_grad_no_reduce(): + """ + Feature: SmoothL1LossGrad cpu kernel. + Description: test the rightness of SmoothL1LossGrad cpu kernel. + Expectation: the output is same as expect. + """ + + epsilon = 1e-6 + + beta = 1.0 + dx = smoothl1loss_grad(beta) + dx1_expect = np.array([-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093, + 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229, + 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995, + 0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451], dtype=np.float32) + + dx2_expect = -dx1_expect + + diff1 = np.absolute(dx[0].asnumpy() - dx1_expect) + diff2 = np.absolute(dx[1].asnumpy() - dx2_expect) + assert(diff1 < epsilon).all() + assert(diff2 < epsilon).all() + + beta = 1 / 9 + dx = smoothl1loss_grad(beta) + dx1_expect = np.array([-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522, + 0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402, + 0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995, + 0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451], dtype=np.float32) + + dx2_expect = -dx1_expect + + diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect)) + diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect)) + assert(diff1 < epsilon).all() + assert(diff2 < epsilon).all() + + +def smoothl1loss_grad_2(beta, reduction): + prediction = np.array([1, 2, 3, 4, 5, 6], dtype=np.float32) + target = np.array([100, 2, 7, 32, 34, 1], dtype=np.float32) + sens = np.array([9], dtype=np.float32) + + net = nn.SmoothL1Loss(beta, reduction) + grad = Grad(net) + return grad(Tensor(prediction), Tensor(target), Tensor(sens)) + + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +@pytest.mark.parametrize("reduction", ['mean', 'sum']) +def test_smoothl1loss_grad_sum(reduction): + """ + Feature: SmoothL1LossGrad cpu kernel, reduction = sum. + Description: test the rightness of SmoothL1LossGrad cpu kernel. + Expectation: the output is same as expect. + """ + + beta = 1.0 + dx = smoothl1loss_grad_2(beta, reduction) + + sum_dx1_expect = np.array([-9, 0, -9, -9, -9, 9], dtype=np.float32) + sum_dx2_expect = -sum_dx1_expect + + mean_dx1_expect = np.array( + [-1.5, 0, -1.5, -1.5, -1.5, 1.5], dtype=np.float32) + mean_dx2_expect = -mean_dx1_expect + + print("dx[0].asnumpy()", dx[0].asnumpy()) + print("dx[1].asnumpy()", dx[1].asnumpy()) + + if reduction == 'sum': + np.testing.assert_array_almost_equal(dx[0].asnumpy(), sum_dx1_expect) + np.testing.assert_array_almost_equal(dx[1].asnumpy(), sum_dx2_expect) + if reduction == 'mean': + np.testing.assert_array_almost_equal(dx[0].asnumpy(), mean_dx1_expect) + np.testing.assert_array_almost_equal(dx[1].asnumpy(), mean_dx2_expect)