commit
62823ca809
|
@ -16,7 +16,7 @@ mindspore.ops.RaggedRange
|
||||||
输出:
|
输出:
|
||||||
- **rt_nested_splits** (Tensor) - 返回RagdTensor的嵌套拆分Tensor,数据类型类型为 `Tsplits` 。shape等于输入 `starts` 的shape加1。
|
- **rt_nested_splits** (Tensor) - 返回RagdTensor的嵌套拆分Tensor,数据类型类型为 `Tsplits` 。shape等于输入 `starts` 的shape加1。
|
||||||
- **rt_dense_values** (Tensor) - 返回RagdTensor的密集值Tensor,其数据类型与输入 `starts` 相同。设输入 `starts、` `limits` 和 `delta` 的大小为i。
|
- **rt_dense_values** (Tensor) - 返回RagdTensor的密集值Tensor,其数据类型与输入 `starts` 相同。设输入 `starts、` `limits` 和 `delta` 的大小为i。
|
||||||
- 如果 `starts` 、 `limits` 和 `delta` 的数据类型为int32或int64,则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i]))` 。
|
- 如果 `starts` 、 `limits` 和 `delta` 的数据类型为int32或int64,则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i]))` 。
|
||||||
- 如果 `starts` 、 `limits` 和 `delta` 的数据类型为float32或者float64,则输出 `rt_dense_values` 的shape等于 :math:`sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))` 。
|
- 如果 `starts` 、 `limits` 和 `delta` 的数据类型为float32或者float64,则输出 `rt_dense_values` 的shape等于 :math:`sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))` 。
|
||||||
|
|
||||||
异常:
|
异常:
|
||||||
|
|
|
@ -76,7 +76,7 @@ def mutable(input_data, dynamic_len=False):
|
||||||
the length of the tuple or list is different for each run, it does not need to be re-compiled.
|
the length of the tuple or list is different for each run, it does not need to be re-compiled.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
input_data (Union[int, float, Tensor, tuple, list, dict): The input data to be made mutable. If
|
input_data (Union[int, float, Tensor, tuple, list, dict]): The input data to be made mutable. If
|
||||||
'input_data' is list/tuple/dict, the type of each element should also in the valid types.
|
'input_data' is list/tuple/dict, the type of each element should also in the valid types.
|
||||||
dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if
|
dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if
|
||||||
`dynamic_len` is True, the `input_data` must be list or tuple and the elements of `input_data` must have
|
`dynamic_len` is True, the `input_data` must be list or tuple and the elements of `input_data` must have
|
||||||
|
|
|
@ -1591,7 +1591,7 @@ class Pad(ImageTensorOperation, PyTensorOperation):
|
||||||
value of edge.
|
value of edge.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int]].
|
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int].
|
||||||
TypeError: If `fill_value` is not of type int or tuple[int].
|
TypeError: If `fill_value` is not of type int or tuple[int].
|
||||||
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
|
||||||
ValueError: If `padding` is negative.
|
ValueError: If `padding` is negative.
|
||||||
|
|
|
@ -1415,8 +1415,8 @@ class MaxUnpool1d(Cell):
|
||||||
|
|
||||||
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values
|
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values
|
||||||
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
|
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
|
||||||
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out}`
|
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out})`
|
||||||
or :math:`(C, H_{out}`. The operation is as follows.
|
or :math:`(C, H_{out})`. The operation is as follows.
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
\begin{array}{ll} \\
|
\begin{array}{ll} \\
|
||||||
|
|
|
@ -575,7 +575,7 @@ class FixedSparseAttention(nn.Cell):
|
||||||
queries to query the context.
|
queries to query the context.
|
||||||
- **k** (Tensor) - Tensor key ( `mstype.fp16` [batch_size, seq_length, hidden_size]): Sequence of
|
- **k** (Tensor) - Tensor key ( `mstype.fp16` [batch_size, seq_length, hidden_size]): Sequence of
|
||||||
queries to query the context.
|
queries to query the context.
|
||||||
- **v** (Tensor) - Tensor value `mstype.fp16` [batch size, sequence length, Embedding Size]):
|
- **v** (Tensor) - Tensor value ( `mstype.fp16` [batch size, sequence length, Embedding Size]):
|
||||||
Sequence of queries to query the context.
|
Sequence of queries to query the context.
|
||||||
- **attention_mask** (Tensor) - Float Tensor the mask of ( `mstype.fp32`, `mstype.fp16`
|
- **attention_mask** (Tensor) - Float Tensor the mask of ( `mstype.fp32`, `mstype.fp16`
|
||||||
[batch_size, seq_length, seq_length]): Lower triangular matrix to pass masked information.
|
[batch_size, seq_length, seq_length]): Lower triangular matrix to pass masked information.
|
||||||
|
|
|
@ -1939,7 +1939,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
|
||||||
x (Tensor): Tensor to be resized.
|
x (Tensor): Tensor to be resized.
|
||||||
Input tensor must be a 3-D, 4-D, or 5-D tensor with shape
|
Input tensor must be a 3-D, 4-D, or 5-D tensor with shape
|
||||||
`(batch, channels, [optional depth], [optional height], width)`, with data type of float.
|
`(batch, channels, [optional depth], [optional height], width)`, with data type of float.
|
||||||
size (Union[int, tuple[int], list[int]], optional)): The target size.
|
size (Union[int, tuple[int], list[int]], optional): The target size.
|
||||||
If size is a tuple or list, size must have the same dimensions as x.
|
If size is a tuple or list, size must have the same dimensions as x.
|
||||||
One and only one of size and scale_factor can be set to None. Default: None.
|
One and only one of size and scale_factor can be set to None. Default: None.
|
||||||
scale_factor (Union[float, tuple[float], list[float]], optional): The scale factor of new size of the tensor.
|
scale_factor (Union[float, tuple[float], list[float]], optional): The scale factor of new size of the tensor.
|
||||||
|
@ -1996,7 +1996,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
|
||||||
- `×` indicates that this parameter is not currently supported.
|
- `×` indicates that this parameter is not currently supported.
|
||||||
- `√` indicates that this parameter is supported.
|
- `√` indicates that this parameter is supported.
|
||||||
|
|
||||||
Outputs:
|
Returns:
|
||||||
Tensor, resized, whose dimensions and dtype are the same as `x`.
|
Tensor, resized, whose dimensions and dtype are the same as `x`.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
|
|
|
@ -6644,7 +6644,7 @@ class RaggedRange(Primitive):
|
||||||
|
|
||||||
- if type of the input `starts`, input `limits` and input `deltas`
|
- if type of the input `starts`, input `limits` and input `deltas`
|
||||||
are int32 or int64, shape of the output `rt_dense_values` is equal to
|
are int32 or int64, shape of the output `rt_dense_values` is equal to
|
||||||
sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i])),
|
sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i])),
|
||||||
- if type of the input `starts`, input `limits` and input `deltas`
|
- if type of the input `starts`, input `limits` and input `deltas`
|
||||||
are float32 or float64, shape of the output `rt_dense_values` is equal to
|
are float32 or float64, shape of the output `rt_dense_values` is equal to
|
||||||
sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))).
|
sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))).
|
||||||
|
|
|
@ -282,7 +282,7 @@ class SummaryLandscape:
|
||||||
For example, in image dataset, You can set num_samples is 2048,
|
For example, in image dataset, You can set num_samples is 2048,
|
||||||
which means that 2048 images are used to create loss landscape.
|
which means that 2048 images are used to create loss landscape.
|
||||||
Default: 2048.
|
Default: 2048.
|
||||||
- intervals (List[List[int]): Specifies the interval
|
- intervals (List[List[int]]): Specifies the interval
|
||||||
in which the loss landscape. For example: If the user wants to
|
in which the loss landscape. For example: If the user wants to
|
||||||
create loss landscape of two training processes, they are 1-5 epoch
|
create loss landscape of two training processes, they are 1-5 epoch
|
||||||
and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]].
|
and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]].
|
||||||
|
|
Loading…
Reference in New Issue