!48629 modify format

Merge pull request !48629 from 俞涵/code_docs_1110
This commit is contained in:
i-robot 2023-02-09 08:04:37 +00:00 committed by Gitee
commit 62823ca809
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
8 changed files with 10 additions and 10 deletions

View File

@ -16,7 +16,7 @@ mindspore.ops.RaggedRange
输出: 输出:
- **rt_nested_splits** (Tensor) - 返回RagdTensor的嵌套拆分Tensor数据类型类型为 `Tsplits` 。shape等于输入 `starts` 的shape加1。 - **rt_nested_splits** (Tensor) - 返回RagdTensor的嵌套拆分Tensor数据类型类型为 `Tsplits` 。shape等于输入 `starts` 的shape加1。
- **rt_dense_values** (Tensor) - 返回RagdTensor的密集值Tensor其数据类型与输入 `starts` 相同。设输入 `starts、` `limits``delta` 的大小为i。 - **rt_dense_values** (Tensor) - 返回RagdTensor的密集值Tensor其数据类型与输入 `starts` 相同。设输入 `starts、` `limits``delta` 的大小为i。
- 如果 `starts``limits``delta` 的数据类型为int32或int64则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i]))` 。 - 如果 `starts``limits``delta` 的数据类型为int32或int64则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i]))` 。
- 如果 `starts``limits``delta` 的数据类型为float32或者float64则输出 `rt_dense_values` 的shape等于 :math:`sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))` - 如果 `starts``limits``delta` 的数据类型为float32或者float64则输出 `rt_dense_values` 的shape等于 :math:`sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))`
异常: 异常:

View File

@ -76,7 +76,7 @@ def mutable(input_data, dynamic_len=False):
the length of the tuple or list is different for each run, it does not need to be re-compiled. the length of the tuple or list is different for each run, it does not need to be re-compiled.
Args: Args:
input_data (Union[int, float, Tensor, tuple, list, dict): The input data to be made mutable. If input_data (Union[int, float, Tensor, tuple, list, dict]): The input data to be made mutable. If
'input_data' is list/tuple/dict, the type of each element should also in the valid types. 'input_data' is list/tuple/dict, the type of each element should also in the valid types.
dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if
`dynamic_len` is True, the `input_data` must be list or tuple and the elements of `input_data` must have `dynamic_len` is True, the `input_data` must be list or tuple and the elements of `input_data` must have

View File

@ -1591,7 +1591,7 @@ class Pad(ImageTensorOperation, PyTensorOperation):
value of edge. value of edge.
Raises: Raises:
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int]]. TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int].
TypeError: If `fill_value` is not of type int or tuple[int]. TypeError: If `fill_value` is not of type int or tuple[int].
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` . TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
ValueError: If `padding` is negative. ValueError: If `padding` is negative.

View File

@ -1415,8 +1415,8 @@ class MaxUnpool1d(Cell):
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out}` is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out})`
or :math:`(C, H_{out}`. The operation is as follows. or :math:`(C, H_{out})`. The operation is as follows.
.. math:: .. math::
\begin{array}{ll} \\ \begin{array}{ll} \\

View File

@ -575,7 +575,7 @@ class FixedSparseAttention(nn.Cell):
queries to query the context. queries to query the context.
- **k** (Tensor) - Tensor key ( `mstype.fp16` [batch_size, seq_length, hidden_size]): Sequence of - **k** (Tensor) - Tensor key ( `mstype.fp16` [batch_size, seq_length, hidden_size]): Sequence of
queries to query the context. queries to query the context.
- **v** (Tensor) - Tensor value `mstype.fp16` [batch size, sequence length, Embedding Size]): - **v** (Tensor) - Tensor value ( `mstype.fp16` [batch size, sequence length, Embedding Size]):
Sequence of queries to query the context. Sequence of queries to query the context.
- **attention_mask** (Tensor) - Float Tensor the mask of ( `mstype.fp32`, `mstype.fp16` - **attention_mask** (Tensor) - Float Tensor the mask of ( `mstype.fp32`, `mstype.fp16`
[batch_size, seq_length, seq_length]): Lower triangular matrix to pass masked information. [batch_size, seq_length, seq_length]): Lower triangular matrix to pass masked information.

View File

@ -1939,7 +1939,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
x (Tensor): Tensor to be resized. x (Tensor): Tensor to be resized.
Input tensor must be a 3-D, 4-D, or 5-D tensor with shape Input tensor must be a 3-D, 4-D, or 5-D tensor with shape
`(batch, channels, [optional depth], [optional height], width)`, with data type of float. `(batch, channels, [optional depth], [optional height], width)`, with data type of float.
size (Union[int, tuple[int], list[int]], optional)): The target size. size (Union[int, tuple[int], list[int]], optional): The target size.
If size is a tuple or list, size must have the same dimensions as x. If size is a tuple or list, size must have the same dimensions as x.
One and only one of size and scale_factor can be set to None. Default: None. One and only one of size and scale_factor can be set to None. Default: None.
scale_factor (Union[float, tuple[float], list[float]], optional): The scale factor of new size of the tensor. scale_factor (Union[float, tuple[float], list[float]], optional): The scale factor of new size of the tensor.
@ -1996,7 +1996,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
- `×` indicates that this parameter is not currently supported. - `×` indicates that this parameter is not currently supported.
- `` indicates that this parameter is supported. - `` indicates that this parameter is supported.
Outputs: Returns:
Tensor, resized, whose dimensions and dtype are the same as `x`. Tensor, resized, whose dimensions and dtype are the same as `x`.
Raises: Raises:

View File

@ -6644,7 +6644,7 @@ class RaggedRange(Primitive):
- if type of the input `starts`, input `limits` and input `deltas` - if type of the input `starts`, input `limits` and input `deltas`
are int32 or int64, shape of the output `rt_dense_values` is equal to are int32 or int64, shape of the output `rt_dense_values` is equal to
sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i])), sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i])),
- if type of the input `starts`, input `limits` and input `deltas` - if type of the input `starts`, input `limits` and input `deltas`
are float32 or float64, shape of the output `rt_dense_values` is equal to are float32 or float64, shape of the output `rt_dense_values` is equal to
sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))). sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))).

View File

@ -282,7 +282,7 @@ class SummaryLandscape:
For example, in image dataset, You can set num_samples is 2048, For example, in image dataset, You can set num_samples is 2048,
which means that 2048 images are used to create loss landscape. which means that 2048 images are used to create loss landscape.
Default: 2048. Default: 2048.
- intervals (List[List[int]): Specifies the interval - intervals (List[List[int]]): Specifies the interval
in which the loss landscape. For example: If the user wants to in which the loss landscape. For example: If the user wants to
create loss landscape of two training processes, they are 1-5 epoch create loss landscape of two training processes, they are 1-5 epoch
and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]. and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]].