!19750 Change some config, NCF hasn't support GPU yet.

Merge pull request !19750 from chenhaozhe/code_docs_chang_config_1.3
This commit is contained in:
i-robot 2021-07-09 01:44:50 +00:00 committed by Gitee
commit 5ff573c71f
4 changed files with 11 additions and 11 deletions

View File

@ -608,9 +608,9 @@ The command above will run in the background, you can view training logs in ner_
If you choose F1 as assessment method, the result will be as follows:
```text
Precision 0.920507
Recall 0.948683
F1 0.920507
Precision 0.868245
Recall 0.865611
F1 0.866926
```
#### evaluation on msra dataset when running on Ascend

View File

@ -572,9 +572,9 @@ bash scripts/run_ner.sh
如您选择F1作为评估方法可得到如下结果
```text
Precision 0.920507
Recall 0.948683
F1 0.920507
Precision 0.868245
Recall 0.865611
F1 0.866926
```
#### Ascend处理器上运行后评估msra数据集

View File

@ -127,7 +127,7 @@ large_net_cfg:
num_hidden_layers: 24
num_attention_heads: 16
intermediate_size: 4096
hidden_act: "gelu"
hidden_act: "fast_gelu"
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
max_position_embeddings: 512
@ -171,4 +171,4 @@ enable_save_ckpt: ["true", "false"]
enable_lossscale: ["true", "false"]
do_shuffle: ["true", "false"]
enable_data_sink: ["true", "false"]
allreduce_post_accumulation: ["true", "false"]
allreduce_post_accumulation: ["true", "false"]

View File

@ -78,8 +78,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
# [Environment Requirements](#contents)
- HardwareAscend/GPU
- Prepare hardware environment with Ascend or GPU processor.
- Hardware(Ascend
- Prepare hardware environment with Ascend.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
@ -308,7 +308,7 @@ Inference result is saved in current path, you can find result like this in acc.
### Inference
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
<https://www.mindspore.cn/tutorial/inference/en/master/multi_platform_inference.html>