add api_python_en and modify some pagedisplay problems

This commit is contained in:
huodagu 2022-04-25 12:55:14 +08:00
parent c33eb85f9a
commit 5e1db76311
43 changed files with 5454 additions and 21 deletions

View File

@ -245,11 +245,13 @@ mindspore.Tensor
- **axis** (int) - 扩展维度指定的轴。
**返回:**
Tensor, 指定轴上扩展的维度为1。
Tensor, 指定轴上扩展的维度为1。
**异常:**
- **TypeError** - axis不是int类型。
- **ValueError** - axis的取值不在[-self.ndim - 1, self.ndim + 1)。
- **TypeError** - axis不是int类型。
- **ValueError** - axis的取值不在[-self.ndim - 1, self.ndim + 1)。
.. py:method:: fill(value)
@ -374,16 +376,19 @@ mindspore.Tensor
根据mask矩阵将值为True对应位置填充为value值。mask矩阵的shape必须与原Tensor相同。
**参数:**
- **mask** (Tensor[bool]) - mask矩阵值为bool类型的Tensor。
- **value** (Union[int, float]) - 填充值可以为int或float类型。
- **mask** (Tensor[bool]) - mask矩阵值为bool类型的Tensor。
- **value** (Union[int, float]) - 填充值可以为int或float类型。
**返回:**
Tensor, shape和dtype与原Tensor相同。
Tensor, shape和dtype与原Tensor相同。
**异常:**
- **TypeError** - mask不是Tensor。
- **TypeError** - mask不是bool类型的Tensor。
- **TypeError** - value不是int或float类型。
- **TypeError** - mask不是Tensor。
- **TypeError** - mask不是bool类型的Tensor。
- **TypeError** - value不是int或float类型。
.. py:method:: max(axis=None, keepdims=False, initial=None, where=True)
@ -441,20 +446,23 @@ mindspore.Tensor
沿指定轴指定起始位置获取指定长度的Tensor。
**参数:**
- **axis** (int) - 指定的轴。
- **start** (int) - 指定的起始位置。
- **length** (int) - 指定的长度。
- **axis** (int) - 指定的轴。
- **start** (int) - 指定的起始位置。
- **length** (int) - 指定的长度。
**返回:**
Tensor。
Tensor。
**异常:**
- **TypeError** - axis不是int类型。
- **TypeError** - start不是int类型。
- **TypeError** - length不是int类型。
- **ValueError** - axis取值不在[0, ndim-1]范围内。
- **ValueError** - start取值不在[0, shape[axis]-1]范围内。
- **ValueError** - start+length超出Tensor的维度范围shape[axis]-1。
- **TypeError** - axis不是int类型。
- **TypeError** - start不是int类型。
- **TypeError** - length不是int类型。
- **ValueError** - axis取值不在[0, ndim-1]范围内。
- **ValueError** - start取值不在[0, shape[axis]-1]范围内。
- **ValueError** - start+length超出Tensor的维度范围shape[axis]-1。
.. py:method:: nbytes
:property:

View File

@ -1,4 +1,4 @@
.. py:class:: mindspore.train.callback.History(has_trained_epoch=0)
.. py:class:: mindspore.train.callback.History
将网络输出的相关信息记录到 `History` 对象中。

View File

@ -0,0 +1,5 @@
mindspore.boost
===============
.. automodule:: mindspore.boost
:members:

View File

@ -0,0 +1,5 @@
mindspore.common.initializer
============================
.. automodule:: mindspore.common.initializer
:members:

View File

@ -0,0 +1,13 @@
mindspore.communication
=======================
.. automodule:: mindspore.communication
:members:
.. py:data:: mindspore.communication.HCCL_WORLD_COMM_GROUP
The string of "hccl_world_group" referring to the default communication group created by HCCL.
.. py:data:: mindspore.communication.NCCL_WORLD_COMM_GROUP
The string of "nccl_world_group" referring to the default communication group created by NCCL.

View File

@ -0,0 +1,6 @@
mindspore.context
=================
.. automodule:: mindspore.context
:exclude-members: set_fl_context, get_fl_context
:members:

View File

@ -0,0 +1,37 @@
mindspore.dataset.audio
=======================
.. automodule:: mindspore.dataset.audio
mindspore.dataset.audio.transforms
----------------------------------
.. autosummary::
:toctree: dataset_audio
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.audio.transforms.AllpassBiquad
mindspore.dataset.audio.transforms.AmplitudeToDB
mindspore.dataset.audio.transforms.Angle
mindspore.dataset.audio.transforms.BandBiquad
mindspore.dataset.audio.transforms.BandpassBiquad
mindspore.dataset.audio.transforms.BandrejectBiquad
mindspore.dataset.audio.transforms.BassBiquad
mindspore.dataset.audio.transforms.ComplexNorm
mindspore.dataset.audio.transforms.Contrast
mindspore.dataset.audio.transforms.FrequencyMasking
mindspore.dataset.audio.transforms.LowpassBiquad
mindspore.dataset.audio.transforms.TimeMasking
mindspore.dataset.audio.transforms.TimeStretch
mindspore.dataset.audio.utils
-----------------------------
.. autosummary::
:toctree: dataset_audio
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.audio.utils.ScaleType

View File

@ -0,0 +1,5 @@
mindspore.dataset.config
========================
.. automodule:: mindspore.dataset.config
:members:

View File

@ -0,0 +1,156 @@
mindspore.dataset
=================
.. automodule:: mindspore.dataset
Vision
-------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.Caltech101Dataset
mindspore.dataset.Caltech256Dataset
mindspore.dataset.CelebADataset
mindspore.dataset.Cifar10Dataset
mindspore.dataset.Cifar100Dataset
mindspore.dataset.CityscapesDataset
mindspore.dataset.CocoDataset
mindspore.dataset.DIV2KDataset
mindspore.dataset.EMnistDataset
mindspore.dataset.FakeImageDataset
mindspore.dataset.FashionMnistDataset
mindspore.dataset.FlickrDataset
mindspore.dataset.Flowers102Dataset
mindspore.dataset.ImageFolderDataset
mindspore.dataset.KMnistDataset
mindspore.dataset.ManifestDataset
mindspore.dataset.MnistDataset
mindspore.dataset.PhotoTourDataset
mindspore.dataset.Places365Dataset
mindspore.dataset.QMnistDataset
mindspore.dataset.SBDataset
mindspore.dataset.SBUDataset
mindspore.dataset.SemeionDataset
mindspore.dataset.STL10Dataset
mindspore.dataset.SVHNDataset
mindspore.dataset.USPSDataset
mindspore.dataset.VOCDataset
mindspore.dataset.WIDERFaceDataset
Text
-----
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.AGNewsDataset
mindspore.dataset.AmazonReviewDataset
mindspore.dataset.CLUEDataset
mindspore.dataset.CoNLL2000Dataset
mindspore.dataset.CSVDataset
mindspore.dataset.DBpediaDataset
mindspore.dataset.EnWik9Dataset
mindspore.dataset.IMDBDataset
mindspore.dataset.IWSLT2016Dataset
mindspore.dataset.IWSLT2017Dataset
mindspore.dataset.PennTreebankDataset
mindspore.dataset.SogouNewsDataset
mindspore.dataset.TextFileDataset
mindspore.dataset.UDPOSDataset
mindspore.dataset.WikiTextDataset
mindspore.dataset.YahooAnswersDataset
mindspore.dataset.YelpReviewDataset
Audio
------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.LJSpeechDataset
mindspore.dataset.SpeechCommandsDataset
mindspore.dataset.TedliumDataset
mindspore.dataset.YesNoDataset
Standard Format
----------------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.CSVDataset
mindspore.dataset.MindDataset
mindspore.dataset.OBSMindDataset
mindspore.dataset.TFRecordDataset
User Defined
--------------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.GeneratorDataset
mindspore.dataset.NumpySlicesDataset
mindspore.dataset.PaddedDataset
mindspore.dataset.RandomDataset
Graph
------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.GraphData
Sampler
--------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited_sampler.rst
mindspore.dataset.DistributedSampler
mindspore.dataset.PKSampler
mindspore.dataset.RandomSampler
mindspore.dataset.SequentialSampler
mindspore.dataset.SubsetRandomSampler
mindspore.dataset.SubsetSampler
mindspore.dataset.WeightedRandomSampler
Others
-------
.. autosummary::
:toctree: dataset
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.dataset.BatchInfo
mindspore.dataset.DatasetCache
mindspore.dataset.DSCallback
mindspore.dataset.SamplingStrategy
mindspore.dataset.Schema
mindspore.dataset.Shuffle
mindspore.dataset.WaitedDSCallback
mindspore.dataset.OutputFormat
mindspore.dataset.compare
mindspore.dataset.deserialize
mindspore.dataset.serialize
mindspore.dataset.show
mindspore.dataset.sync_wait_for_dataset
mindspore.dataset.utils.imshow_det_bbox
mindspore.dataset.zip

View File

@ -0,0 +1,50 @@
mindspore.dataset.text
======================
.. automodule:: mindspore.dataset.text
mindspore.dataset.text.transforms
---------------------------------
.. msnoteautosummary::
:toctree: dataset_text
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.text.transforms.BasicTokenizer
mindspore.dataset.text.transforms.BertTokenizer
mindspore.dataset.text.transforms.CaseFold
mindspore.dataset.text.transforms.JiebaTokenizer
mindspore.dataset.text.transforms.Lookup
mindspore.dataset.text.transforms.Ngram
mindspore.dataset.text.transforms.NormalizeUTF8
mindspore.dataset.text.transforms.PythonTokenizer
mindspore.dataset.text.transforms.RegexReplace
mindspore.dataset.text.transforms.RegexTokenizer
mindspore.dataset.text.transforms.SentencePieceTokenizer
mindspore.dataset.text.transforms.SlidingWindow
mindspore.dataset.text.transforms.ToNumber
mindspore.dataset.text.transforms.TruncateSequencePair
mindspore.dataset.text.transforms.UnicodeCharTokenizer
mindspore.dataset.text.transforms.UnicodeScriptTokenizer
mindspore.dataset.text.transforms.WhitespaceTokenizer
mindspore.dataset.text.transforms.WordpieceTokenizer
mindspore.dataset.text.utils
----------------------------
.. msnoteautosummary::
:toctree: dataset_text
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.text.JiebaMode
mindspore.dataset.text.NormalizeForm
mindspore.dataset.text.SentencePieceModel
mindspore.dataset.text.SentencePieceVocab
mindspore.dataset.text.SPieceTokenizerLoadType
mindspore.dataset.text.SPieceTokenizerOutType
mindspore.dataset.text.to_str
mindspore.dataset.text.to_bytes
mindspore.dataset.text.Vocab

View File

@ -0,0 +1,40 @@
mindspore.dataset.transforms
============================
.. automodule:: mindspore.dataset.transforms
mindspore.dataset.transforms.c_transforms
-----------------------------------------
.. autosummary::
:toctree: dataset_transforms
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.transforms.c_transforms.Compose
mindspore.dataset.transforms.c_transforms.Concatenate
mindspore.dataset.transforms.c_transforms.Duplicate
mindspore.dataset.transforms.c_transforms.Fill
mindspore.dataset.transforms.c_transforms.Mask
mindspore.dataset.transforms.c_transforms.OneHot
mindspore.dataset.transforms.c_transforms.PadEnd
mindspore.dataset.transforms.c_transforms.RandomApply
mindspore.dataset.transforms.c_transforms.RandomChoice
mindspore.dataset.transforms.c_transforms.Relational
mindspore.dataset.transforms.c_transforms.Slice
mindspore.dataset.transforms.c_transforms.TypeCast
mindspore.dataset.transforms.c_transforms.Unique
mindspore.dataset.transforms.py_transforms
------------------------------------------
.. autosummary::
:toctree: dataset_transforms
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.transforms.py_transforms.Compose
mindspore.dataset.transforms.py_transforms.OneHotOp
mindspore.dataset.transforms.py_transforms.RandomApply
mindspore.dataset.transforms.py_transforms.RandomChoice
mindspore.dataset.transforms.py_transforms.RandomOrder

View File

@ -0,0 +1,115 @@
mindspore.dataset.vision
===================================
.. automodule:: mindspore.dataset.vision
mindspore.dataset.vision.c_transforms
------------------------------------------------
.. autosummary::
:toctree: dataset_vision
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.vision.c_transforms.AutoContrast
mindspore.dataset.vision.c_transforms.BoundingBoxAugment
mindspore.dataset.vision.c_transforms.CenterCrop
mindspore.dataset.vision.c_transforms.ConvertColor
mindspore.dataset.vision.c_transforms.Crop
mindspore.dataset.vision.c_transforms.CutMixBatch
mindspore.dataset.vision.c_transforms.CutOut
mindspore.dataset.vision.c_transforms.Decode
mindspore.dataset.vision.c_transforms.Equalize
mindspore.dataset.vision.c_transforms.GaussianBlur
mindspore.dataset.vision.c_transforms.HorizontalFlip
mindspore.dataset.vision.c_transforms.HWC2CHW
mindspore.dataset.vision.c_transforms.Invert
mindspore.dataset.vision.c_transforms.MixUpBatch
mindspore.dataset.vision.c_transforms.Normalize
mindspore.dataset.vision.c_transforms.NormalizePad
mindspore.dataset.vision.c_transforms.Pad
mindspore.dataset.vision.c_transforms.RandomAffine
mindspore.dataset.vision.c_transforms.RandomColor
mindspore.dataset.vision.c_transforms.RandomColorAdjust
mindspore.dataset.vision.c_transforms.RandomCrop
mindspore.dataset.vision.c_transforms.RandomCropDecodeResize
mindspore.dataset.vision.c_transforms.RandomCropWithBBox
mindspore.dataset.vision.c_transforms.RandomHorizontalFlip
mindspore.dataset.vision.c_transforms.RandomHorizontalFlipWithBBox
mindspore.dataset.vision.c_transforms.RandomPosterize
mindspore.dataset.vision.c_transforms.RandomResize
mindspore.dataset.vision.c_transforms.RandomResizedCrop
mindspore.dataset.vision.c_transforms.RandomResizedCropWithBBox
mindspore.dataset.vision.c_transforms.RandomResizeWithBBox
mindspore.dataset.vision.c_transforms.RandomRotation
mindspore.dataset.vision.c_transforms.RandomSelectSubpolicy
mindspore.dataset.vision.c_transforms.RandomSharpness
mindspore.dataset.vision.c_transforms.RandomSolarize
mindspore.dataset.vision.c_transforms.RandomVerticalFlip
mindspore.dataset.vision.c_transforms.RandomVerticalFlipWithBBox
mindspore.dataset.vision.c_transforms.Rescale
mindspore.dataset.vision.c_transforms.Resize
mindspore.dataset.vision.c_transforms.ResizeWithBBox
mindspore.dataset.vision.c_transforms.Rotate
mindspore.dataset.vision.c_transforms.SlicePatches
mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg
mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg
mindspore.dataset.vision.c_transforms.UniformAugment
mindspore.dataset.vision.c_transforms.VerticalFlip
mindspore.dataset.vision.py_transforms
-------------------------------------------------
.. autosummary::
:toctree: dataset_vision
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.vision.py_transforms.AutoContrast
mindspore.dataset.vision.py_transforms.CenterCrop
mindspore.dataset.vision.py_transforms.Cutout
mindspore.dataset.vision.py_transforms.Decode
mindspore.dataset.vision.py_transforms.Equalize
mindspore.dataset.vision.py_transforms.FiveCrop
mindspore.dataset.vision.py_transforms.Grayscale
mindspore.dataset.vision.py_transforms.HsvToRgb
mindspore.dataset.vision.py_transforms.HWC2CHW
mindspore.dataset.vision.py_transforms.Invert
mindspore.dataset.vision.py_transforms.LinearTransformation
mindspore.dataset.vision.py_transforms.MixUp
mindspore.dataset.vision.py_transforms.Normalize
mindspore.dataset.vision.py_transforms.NormalizePad
mindspore.dataset.vision.py_transforms.Pad
mindspore.dataset.vision.py_transforms.RandomAffine
mindspore.dataset.vision.py_transforms.RandomColor
mindspore.dataset.vision.py_transforms.RandomColorAdjust
mindspore.dataset.vision.py_transforms.RandomCrop
mindspore.dataset.vision.py_transforms.RandomErasing
mindspore.dataset.vision.py_transforms.RandomGrayscale
mindspore.dataset.vision.py_transforms.RandomHorizontalFlip
mindspore.dataset.vision.py_transforms.RandomPerspective
mindspore.dataset.vision.py_transforms.RandomResizedCrop
mindspore.dataset.vision.py_transforms.RandomRotation
mindspore.dataset.vision.py_transforms.RandomSharpness
mindspore.dataset.vision.py_transforms.RandomVerticalFlip
mindspore.dataset.vision.py_transforms.Resize
mindspore.dataset.vision.py_transforms.RgbToHsv
mindspore.dataset.vision.py_transforms.TenCrop
mindspore.dataset.vision.py_transforms.ToPIL
mindspore.dataset.vision.py_transforms.ToTensor
mindspore.dataset.vision.py_transforms.ToType
mindspore.dataset.vision.py_transforms.UniformAugment
mindspore.dataset.vision.utils
-------------------------------
.. autosummary::
:toctree: dataset_vision
:nosignatures:
:template: classtemplate.rst
mindspore.dataset.vision.Border
mindspore.dataset.vision.ConvertMode
mindspore.dataset.vision.ImageBatchFormat
mindspore.dataset.vision.Inter
mindspore.dataset.vision.SliceMode

View File

@ -0,0 +1,5 @@
mindspore.mindrecord
====================
.. automodule:: mindspore.mindrecord
:members:

View File

@ -0,0 +1,42 @@
mindspore.nn.probability
========================
Bijectors
---------
.. msplatformautosummary::
:toctree: nn_probability
:nosignatures:
:template: classtemplate_probability.rst
mindspore.nn.probability.bijector.Bijector
mindspore.nn.probability.bijector.Exp
mindspore.nn.probability.bijector.GumbelCDF
mindspore.nn.probability.bijector.Invert
mindspore.nn.probability.bijector.PowerTransform
mindspore.nn.probability.bijector.ScalarAffine
mindspore.nn.probability.bijector.Softplus
Distributions
--------------
.. msplatformautosummary::
:toctree: nn_probability
:nosignatures:
:template: classtemplate_probability.rst
mindspore.nn.probability.distribution.Bernoulli
mindspore.nn.probability.distribution.Beta
mindspore.nn.probability.distribution.Categorical
mindspore.nn.probability.distribution.Cauchy
mindspore.nn.probability.distribution.Distribution
mindspore.nn.probability.distribution.Exponential
mindspore.nn.probability.distribution.Gamma
mindspore.nn.probability.distribution.Geometric
mindspore.nn.probability.distribution.Gumbel
mindspore.nn.probability.distribution.Logistic
mindspore.nn.probability.distribution.LogNormal
mindspore.nn.probability.distribution.Normal
mindspore.nn.probability.distribution.Poisson
mindspore.nn.probability.distribution.TransformedDistribution
mindspore.nn.probability.distribution.Uniform

View File

@ -0,0 +1,416 @@
mindspore.nn
=============
Neural Network Cell
For building predefined building blocks or computational units in neural networks.
Compared with the previous version, the added, deleted and supported platforms change information of `mindspore.nn` operators in MindSpore, please refer to the link `<https://gitee.com/mindspore/docs/blob/master/resource/api_updates/nn_api_updates.md>`_.
Basic Building Block
--------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Cell
mindspore.nn.GraphCell
mindspore.nn.LossBase
mindspore.nn.Optimizer
Container
---------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.CellList
mindspore.nn.SequentialCell
Encapsulation Layer
-------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.DistributedGradReducer
mindspore.nn.DynamicLossScaleUpdateCell
mindspore.nn.FixedLossScaleUpdateCell
mindspore.nn.ForwardValueAndGrad
mindspore.nn.GetNextSingleOp
mindspore.nn.MicroBatchInterleaved
mindspore.nn.ParameterUpdate
mindspore.nn.PipelineCell
mindspore.nn.TimeDistributed
mindspore.nn.TrainOneStepCell
mindspore.nn.TrainOneStepWithLossScaleCell
mindspore.nn.WithEvalCell
mindspore.nn.WithGradCell
mindspore.nn.WithLossCell
Convolutional Neural Network Layer
----------------------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Conv1d
mindspore.nn.Conv1dTranspose
mindspore.nn.Conv2d
mindspore.nn.Conv2dTranspose
mindspore.nn.Conv3d
mindspore.nn.Conv3dTranspose
mindspore.nn.Unfold
Recurrent Neural Network Layer
------------------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.RNN
mindspore.nn.RNNCell
mindspore.nn.GRU
mindspore.nn.GRUCell
mindspore.nn.LSTM
mindspore.nn.LSTMCell
Embedding Layer
---------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Embedding
mindspore.nn.EmbeddingLookup
mindspore.nn.MultiFieldEmbeddingLookup
Nonlinear Activation Function Layer
-----------------------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.CELU
mindspore.nn.ELU
mindspore.nn.FastGelu
mindspore.nn.GELU
mindspore.nn.HShrink
mindspore.nn.HSigmoid
mindspore.nn.HSwish
mindspore.nn.LeakyReLU
mindspore.nn.LogSigmoid
mindspore.nn.LogSoftmax
mindspore.nn.PReLU
mindspore.nn.ReLU
mindspore.nn.ReLU6
mindspore.nn.Sigmoid
mindspore.nn.Softmax
mindspore.nn.SoftShrink
mindspore.nn.Tanh
Linear Layer
------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Dense
Dropout Layer
-------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Dropout
Normalization Layer
-------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.BatchNorm1d
mindspore.nn.BatchNorm2d
mindspore.nn.BatchNorm3d
mindspore.nn.GlobalBatchNorm
mindspore.nn.GroupNorm
mindspore.nn.InstanceNorm2d
mindspore.nn.LayerNorm
mindspore.nn.SyncBatchNorm
Pooling Layer
-------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.AvgPool1d
mindspore.nn.AvgPool2d
mindspore.nn.MaxPool1d
mindspore.nn.MaxPool2d
Filling Layer
-------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Pad
Loss Function
-------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.BCELoss
mindspore.nn.BCEWithLogitsLoss
mindspore.nn.CosineEmbeddingLoss
mindspore.nn.DiceLoss
mindspore.nn.FocalLoss
mindspore.nn.L1Loss
mindspore.nn.MSELoss
mindspore.nn.MultiClassDiceLoss
mindspore.nn.RMSELoss
mindspore.nn.SampledSoftmaxLoss
mindspore.nn.SmoothL1Loss
mindspore.nn.SoftMarginLoss
mindspore.nn.SoftmaxCrossEntropyWithLogits
Optimizer
---------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Adagrad
mindspore.nn.Adam
mindspore.nn.AdamOffload
mindspore.nn.AdamWeightDecay
mindspore.nn.AdaSumByDeltaWeightWrapCell
mindspore.nn.AdaSumByGradWrapCell
mindspore.nn.ASGD
mindspore.nn.FTRL
mindspore.nn.Lamb
mindspore.nn.LARS
mindspore.nn.LazyAdam
mindspore.nn.Momentum
mindspore.nn.ProximalAdagrad
mindspore.nn.RMSProp
mindspore.nn.Rprop
mindspore.nn.SGD
mindspore.nn.thor
Evaluation Metrics
------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Accuracy
mindspore.nn.auc
mindspore.nn.BleuScore
mindspore.nn.ConfusionMatrix
mindspore.nn.ConfusionMatrixMetric
mindspore.nn.CosineSimilarity
mindspore.nn.Dice
mindspore.nn.F1
mindspore.nn.Fbeta
mindspore.nn.HausdorffDistance
mindspore.nn.get_metric_fn
mindspore.nn.Loss
mindspore.nn.MAE
mindspore.nn.MeanSurfaceDistance
mindspore.nn.Metric
mindspore.nn.MSE
mindspore.nn.names
mindspore.nn.OcclusionSensitivity
mindspore.nn.Perplexity
mindspore.nn.Precision
mindspore.nn.Recall
mindspore.nn.ROC
mindspore.nn.RootMeanSquareDistance
mindspore.nn.rearrange_inputs
mindspore.nn.Top1CategoricalAccuracy
mindspore.nn.Top5CategoricalAccuracy
mindspore.nn.TopKCategoricalAccuracy
Dynamic Learning Rate
---------------------
LearningRateSchedule Class
^^^^^^^^^^^^^^^^^^^^^^^^^^
The dynamic learning rates in this module are all subclasses of LearningRateSchedule. Pass the instance of
LearningRateSchedule to an optimizer. During the training process, the optimizer calls the instance taking current step
as input to get the current learning rate.
.. code-block::
import mindspore.nn as nn
min_lr = 0.01
max_lr = 0.1
decay_steps = 4
cosine_decay_lr = nn.CosineDecayLR(min_lr, max_lr, decay_steps)
net = Net()
optim = nn.Momentum(net.trainable_params(), learning_rate=cosine_decay_lr, momentum=0.9)
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.CosineDecayLR
mindspore.nn.ExponentialDecayLR
mindspore.nn.InverseDecayLR
mindspore.nn.NaturalExpDecayLR
mindspore.nn.PolynomialDecayLR
mindspore.nn.WarmUpLR
Dynamic LR Function
^^^^^^^^^^^^^^^^^^^
The dynamic learning rates in this module are all functions. Call the function and pass the result to an optimizer.
During the training process, the optimizer takes result[current step] as current learning rate.
.. code-block::
import mindspore.nn as nn
min_lr = 0.01
max_lr = 0.1
total_step = 6
step_per_epoch = 1
decay_epoch = 4
lr= nn.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)
net = Net()
optim = nn.Momentum(net.trainable_params(), learning_rate=lr, momentum=0.9)
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.cosine_decay_lr
mindspore.nn.exponential_decay_lr
mindspore.nn.inverse_decay_lr
mindspore.nn.natural_exp_decay_lr
mindspore.nn.piecewise_constant_lr
mindspore.nn.polynomial_decay_lr
mindspore.nn.warmup_lr
Sparse Layer
------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.SparseTensorDenseMatmul
mindspore.nn.SparseToDense
Image Processing Layer
----------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.CentralCrop
mindspore.nn.ImageGradients
mindspore.nn.MSSSIM
mindspore.nn.PSNR
mindspore.nn.ResizeBilinear
mindspore.nn.SSIM
Matrix Processing
-----------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.MatrixDiag
mindspore.nn.MatrixDiagPart
mindspore.nn.MatrixSetDiag
Tools
-----
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.ClipByNorm
mindspore.nn.Flatten
mindspore.nn.get_activation
mindspore.nn.L1Regularizer
mindspore.nn.Norm
mindspore.nn.OneHot
mindspore.nn.Range
mindspore.nn.Roll
mindspore.nn.Tril
mindspore.nn.Triu
Mathematical Operations
-----------------------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.MatMul
mindspore.nn.Moments
mindspore.nn.ReduceLogSumExp
Gradient
--------
.. msplatformautosummary::
:toctree: nn
:nosignatures:
:template: classtemplate.rst
mindspore.nn.Jvp
mindspore.nn.Vjp

View File

@ -0,0 +1,5 @@
mindspore.nn.transformer
========================
.. automodule:: mindspore.nn.transformer
:members:

View File

@ -0,0 +1,724 @@
mindspore.numpy
===============
.. currentmodule:: mindspore.numpy
MindSpore Numpy package contains a set of Numpy-like interfaces, which allows developers to build models on MindSpore with similar syntax of Numpy.
MindSpore Numpy operators can be classified into four functional modules: `array generation`, `array operation`, `logic operation` and `math operation`.
Common imported modules in corresponding API examples are as follows:
.. code-block:: python
import mindspore.numpy as np
Array Generation
----------------
Array generation operators are used to generate tensors.
Here is an example to generate an array:
.. code-block:: python
import mindspore.numpy as np
import mindspore.ops as ops
input_x = np.array([1, 2, 3], np.float32)
print("input_x =", input_x)
print("type of input_x =", ops.typeof(input_x))
The result is as follows:
.. code-block::
input_x = [1. 2. 3.]
type of input_x = Tensor[Float32]
Here we have more examples:
- Generate a tensor filled with the same element
`np.full` can be used to generate a tensor with user-specified values:
.. code-block:: python
input_x = np.full((2, 3), 6, np.float32)
print(input_x)
The result is as follows:
.. code-block::
[[6. 6. 6.]
[6. 6. 6.]]
Here is another example to generate an array with the specified shape and filled with the value of 1:
.. code-block:: python
input_x = np.ones((2, 3), np.float32)
print(input_x)
The result is as follows:
.. code-block::
[[1. 1. 1.]
[1. 1. 1.]]
- Generate tensors in a specified range
Generate an arithmetic array within the specified range
.. code-block:: python
input_x = np.arange(0, 5, 1)
print(input_x)
The result is as follows:
.. code-block::
[0 1 2 3 4]
- Generate tensors with specific requirement
Generate a matrix where the lower elements are 1 and the upper elements are 0 on the given diagonal:
.. code-block:: python
input_x = np.tri(3, 3, 1)
print(input_x)
The result is as follows:
.. code-block::
[[1. 1. 0.]
[1. 1. 1.]
[1. 1. 1.]]
Another example, generate a 2-D matrix with a diagonal of 1 and other elements of 0:
.. code-block:: python
input_x = np.eye(2, 2)
print(input_x)
The result is as follows:
.. code-block::
[[1. 0.]
[0. 1.]]
.. msplatformautosummary::
:toctree: numpy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.numpy.arange
mindspore.numpy.array
mindspore.numpy.asarray
mindspore.numpy.asfarray
mindspore.numpy.bartlett
mindspore.numpy.blackman
mindspore.numpy.copy
mindspore.numpy.diag
mindspore.numpy.diag_indices
mindspore.numpy.diagflat
mindspore.numpy.diagonal
mindspore.numpy.empty
mindspore.numpy.empty_like
mindspore.numpy.eye
mindspore.numpy.full
mindspore.numpy.full_like
mindspore.numpy.geomspace
mindspore.numpy.hamming
mindspore.numpy.hanning
mindspore.numpy.histogram_bin_edges
mindspore.numpy.identity
mindspore.numpy.indices
mindspore.numpy.ix_
mindspore.numpy.linspace
mindspore.numpy.logspace
mindspore.numpy.meshgrid
mindspore.numpy.mgrid
mindspore.numpy.ogrid
mindspore.numpy.ones
mindspore.numpy.ones_like
mindspore.numpy.pad
mindspore.numpy.rand
mindspore.numpy.randint
mindspore.numpy.randn
mindspore.numpy.trace
mindspore.numpy.tri
mindspore.numpy.tril
mindspore.numpy.tril_indices
mindspore.numpy.tril_indices_from
mindspore.numpy.triu
mindspore.numpy.triu_indices
mindspore.numpy.triu_indices_from
mindspore.numpy.vander
mindspore.numpy.zeros
mindspore.numpy.zeros_like
Array Operation
---------------
Array operations focus on tensor manipulation.
- Manipulate the shape of the tensor
For example, transpose a matrix:
.. code-block:: python
input_x = np.arange(10).reshape(5, 2)
output = np.transpose(input_x)
print(output)
The result is as follows:
.. code-block::
[[0 2 4 6 8]
[1 3 5 7 9]]
Another example, swap two axes:
.. code-block:: python
input_x = np.ones((1, 2, 3))
output = np.swapaxes(input_x, 0, 1)
print(output.shape)
The result is as follows:
.. code-block::
(2, 1, 3)
- Tensor splitting
Divide the input tensor into multiple tensors equally, for example:
.. code-block:: python
input_x = np.arange(9)
output = np.split(input_x, 3)
print(output)
The result is as follows:
.. code-block::
(Tensor(shape=[3], dtype=Int32, value= [0, 1, 2]), Tensor(shape=[3], dtype=Int32, value= [3, 4, 5]), Tensor(shape=[3], dtype=Int32, value= [6, 7, 8]))
- Tensor combination
Concatenate the two tensors according to the specified axis, for example:
.. code-block:: python
input_x = np.arange(0, 5)
input_y = np.arange(10, 15)
output = np.concatenate((input_x, input_y), axis=0)
print(output)
The result is as follows:
.. code-block::
[ 0 1 2 3 4 10 11 12 13 14]
.. msplatformautosummary::
:toctree: numpy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.numpy.append
mindspore.numpy.apply_along_axis
mindspore.numpy.apply_over_axes
mindspore.numpy.array_split
mindspore.numpy.array_str
mindspore.numpy.atleast_1d
mindspore.numpy.atleast_2d
mindspore.numpy.atleast_3d
mindspore.numpy.broadcast_arrays
mindspore.numpy.broadcast_to
mindspore.numpy.choose
mindspore.numpy.column_stack
mindspore.numpy.concatenate
mindspore.numpy.dsplit
mindspore.numpy.dstack
mindspore.numpy.expand_dims
mindspore.numpy.flip
mindspore.numpy.fliplr
mindspore.numpy.flipud
mindspore.numpy.hsplit
mindspore.numpy.hstack
mindspore.numpy.moveaxis
mindspore.numpy.piecewise
mindspore.numpy.ravel
mindspore.numpy.repeat
mindspore.numpy.reshape
mindspore.numpy.roll
mindspore.numpy.rollaxis
mindspore.numpy.rot90
mindspore.numpy.select
mindspore.numpy.size
mindspore.numpy.split
mindspore.numpy.squeeze
mindspore.numpy.stack
mindspore.numpy.swapaxes
mindspore.numpy.take
mindspore.numpy.take_along_axis
mindspore.numpy.tile
mindspore.numpy.transpose
mindspore.numpy.unique
mindspore.numpy.unravel_index
mindspore.numpy.vsplit
mindspore.numpy.vstack
mindspore.numpy.where
Logic
-----
Logic operations define computations related with boolean types.
Examples of `equal` and `less` operations are as follows:
.. code-block:: python
input_x = np.arange(0, 5)
input_y = np.arange(0, 10, 2)
output = np.equal(input_x, input_y)
print("output of equal:", output)
output = np.less(input_x, input_y)
print("output of less:", output)
The result is as follows:
.. code-block::
output of equal: [ True False False False False]
output of less: [False True True True True]
.. msplatformautosummary::
:toctree: numpy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.numpy.array_equal
mindspore.numpy.array_equiv
mindspore.numpy.equal
mindspore.numpy.greater
mindspore.numpy.greater_equal
mindspore.numpy.in1d
mindspore.numpy.isclose
mindspore.numpy.isfinite
mindspore.numpy.isin
mindspore.numpy.isinf
mindspore.numpy.isnan
mindspore.numpy.isneginf
mindspore.numpy.isposinf
mindspore.numpy.isscalar
mindspore.numpy.less
mindspore.numpy.less_equal
mindspore.numpy.logical_and
mindspore.numpy.logical_not
mindspore.numpy.logical_or
mindspore.numpy.logical_xor
mindspore.numpy.not_equal
mindspore.numpy.signbit
mindspore.numpy.sometrue
Math
----
Math operations include basic and advanced math operations on tensors, and they have full support on Numpy broadcasting rules. Here are some examples:
- Sum two tensors
The following code implements the operation of adding two tensors of `input_x` and `input_y`:
.. code-block:: python
input_x = np.full((3, 2), [1, 2])
input_y = np.full((3, 2), [3, 4])
output = np.add(input_x, input_y)
print(output)
The result is as follows:
.. code-block::
[[4 6]
[4 6]
[4 6]]
- Matrics multiplication
The following code implements the operation of multiplying two matrices `input_x` and `input_y`:
.. code-block:: python
input_x = np.arange(2*3).reshape(2, 3).astype('float32')
input_y = np.arange(3*4).reshape(3, 4).astype('float32')
output = np.matmul(input_x, input_y)
print(output)
The result is as follows:
.. code-block::
[[20. 23. 26. 29.]
[56. 68. 80. 92.]]
- Take the average along a given axis
The following code implements the operation of averaging all the elements of `input_x`:
.. code-block:: python
input_x = np.arange(6).astype('float32')
output = np.mean(input_x)
print(output)
The result is as follows:
.. code-block::
2.5
- Exponential arithmetic
The following code implements the operation of the natural constant `e` to the power of `input_x`:
.. code-block:: python
input_x = np.arange(5).astype('float32')
output = np.exp(input_x)
print(output)
The result is as follows:
.. code-block::
[ 1. 2.7182817 7.389056 20.085537 54.59815 ]
.. msplatformautosummary::
:toctree: numpy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.numpy.absolute
mindspore.numpy.add
mindspore.numpy.amax
mindspore.numpy.amin
mindspore.numpy.arccos
mindspore.numpy.arccosh
mindspore.numpy.arcsin
mindspore.numpy.arcsinh
mindspore.numpy.arctan
mindspore.numpy.arctan2
mindspore.numpy.arctanh
mindspore.numpy.argmax
mindspore.numpy.argmin
mindspore.numpy.around
mindspore.numpy.average
mindspore.numpy.bincount
mindspore.numpy.bitwise_and
mindspore.numpy.bitwise_or
mindspore.numpy.bitwise_xor
mindspore.numpy.cbrt
mindspore.numpy.ceil
mindspore.numpy.clip
mindspore.numpy.convolve
mindspore.numpy.copysign
mindspore.numpy.corrcoef
mindspore.numpy.correlate
mindspore.numpy.cos
mindspore.numpy.cosh
mindspore.numpy.count_nonzero
mindspore.numpy.cov
mindspore.numpy.cross
mindspore.numpy.cumprod
mindspore.numpy.cumsum
mindspore.numpy.deg2rad
mindspore.numpy.diff
mindspore.numpy.digitize
mindspore.numpy.divide
mindspore.numpy.divmod
mindspore.numpy.dot
mindspore.numpy.ediff1d
mindspore.numpy.exp
mindspore.numpy.exp2
mindspore.numpy.expm1
mindspore.numpy.fix
mindspore.numpy.float_power
mindspore.numpy.floor
mindspore.numpy.floor_divide
mindspore.numpy.fmod
mindspore.numpy.gcd
mindspore.numpy.gradient
mindspore.numpy.heaviside
mindspore.numpy.histogram
mindspore.numpy.histogram2d
mindspore.numpy.histogramdd
mindspore.numpy.hypot
mindspore.numpy.inner
mindspore.numpy.interp
mindspore.numpy.invert
mindspore.numpy.kron
mindspore.numpy.lcm
mindspore.numpy.log
mindspore.numpy.log10
mindspore.numpy.log1p
mindspore.numpy.log2
mindspore.numpy.logaddexp
mindspore.numpy.logaddexp2
mindspore.numpy.matmul
mindspore.numpy.matrix_power
mindspore.numpy.maximum
mindspore.numpy.mean
mindspore.numpy.minimum
mindspore.numpy.multi_dot
mindspore.numpy.multiply
mindspore.numpy.nancumsum
mindspore.numpy.nanmax
mindspore.numpy.nanmean
mindspore.numpy.nanmin
mindspore.numpy.nanstd
mindspore.numpy.nansum
mindspore.numpy.nanvar
mindspore.numpy.negative
mindspore.numpy.norm
mindspore.numpy.outer
mindspore.numpy.polyadd
mindspore.numpy.polyder
mindspore.numpy.polyint
mindspore.numpy.polymul
mindspore.numpy.polysub
mindspore.numpy.polyval
mindspore.numpy.positive
mindspore.numpy.power
mindspore.numpy.promote_types
mindspore.numpy.ptp
mindspore.numpy.rad2deg
mindspore.numpy.radians
mindspore.numpy.ravel_multi_index
mindspore.numpy.reciprocal
mindspore.numpy.remainder
mindspore.numpy.result_type
mindspore.numpy.rint
mindspore.numpy.searchsorted
mindspore.numpy.sign
mindspore.numpy.sin
mindspore.numpy.sinh
mindspore.numpy.sqrt
mindspore.numpy.square
mindspore.numpy.std
mindspore.numpy.subtract
mindspore.numpy.sum
mindspore.numpy.tan
mindspore.numpy.tanh
mindspore.numpy.tensordot
mindspore.numpy.trapz
mindspore.numpy.true_divide
mindspore.numpy.trunc
mindspore.numpy.unwrap
mindspore.numpy.var
Interact With MindSpore Functions
---------------------------------
Since `mindspore.numpy` directly wraps MindSpore tensors and operators, it has all the advantages and properties of MindSpore. In this section, we will briefly introduce how to employ MindSpore execution management and automatic differentiation in `mindspore.numpy` coding scenarios. These include:
- `ms_function`: for running codes in static graph mode for better efficiency.
- `GradOperation`: for automatic gradient computation.
- `mindspore.context`: for `mindspore.numpy` execution management.
- `mindspore.nn.Cell`: for using `mindspore.numpy` interfaces in MindSpore Deep Learning Models.
The following are examples:
- Use ms_function to run code in static graph mode
Let's first see an example consisted of matrix multiplication and bias add, which is a typical process in Neural Networks:
.. code-block:: python
import mindspore.numpy as np
x = np.arange(8).reshape(2, 4).astype('float32')
w1 = np.ones((4, 8))
b1 = np.zeros((8,))
w2 = np.ones((8, 16))
b2 = np.zeros((16,))
w3 = np.ones((16, 4))
b3 = np.zeros((4,))
def forward(x, w1, b1, w2, b2, w3, b3):
x = np.dot(x, w1) + b1
x = np.dot(x, w2) + b2
x = np.dot(x, w3) + b3
return x
print(forward(x, w1, b1, w2, b2, w3, b3))
The result is as follows:
.. code-block::
[[ 768. 768. 768. 768.]
[2816. 2816. 2816. 2816.]]
In this function, MindSpore dispatches each computing kernel to device separately. However, with the help of `ms_function`, we can compile all operations into a single static computing graph.
.. code-block:: python
from mindspore import ms_function
forward_compiled = ms_function(forward)
print(forward(x, w1, b1, w2, b2, w3, b3))
The result is as follows:
.. code-block::
[[ 768. 768. 768. 768.]
[2816. 2816. 2816. 2816.]]
.. note::
Currently, static graph cannot run in Python interactive mode and not all python types can be passed into functions decorated with `ms_function`. For details about how to use `ms_function`, see `API ms_function <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.ms_function.html>`_ .
- Use GradOperation to compute deratives
`GradOperation` can be used to take deratives from normal functions and functions decorated with `ms_function`. Take the previous example:
.. code-block:: python
from mindspore import ops
grad_all = ops.composite.GradOperation(get_all=True)
print(grad_all(forward)(x, w1, b1, w2, b2, w3, b3))
The result is as follows:
.. code-block::
(Tensor(shape=[2, 4], dtype=Float32, value=
[[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02, 5.12000000e+02],
[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02, 5.12000000e+02]]),
Tensor(shape=[4, 8], dtype=Float32, value=
[[ 2.56000000e+02, 2.56000000e+02, 2.56000000e+02 ... 2.56000000e+02, 2.56000000e+02, 2.56000000e+02],
[ 3.84000000e+02, 3.84000000e+02, 3.84000000e+02 ... 3.84000000e+02, 3.84000000e+02, 3.84000000e+02],
[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02 ... 5.12000000e+02, 5.12000000e+02, 5.12000000e+02]
[ 6.40000000e+02, 6.40000000e+02, 6.40000000e+02 ... 6.40000000e+02, 6.40000000e+02, 6.40000000e+02]]),
...
Tensor(shape=[4], dtype=Float32, value= [ 2.00000000e+00, 2.00000000e+00, 2.00000000e+00, 2.00000000e+00]))
To take the gradient of `ms_function` compiled functions, first we need to set the execution mode to static graph mode.
.. code-block:: python
from mindspore import ms_function, context
context.set_context(mode=context.GRAPH_MODE)
grad_all = ops.composite.GradOperation(get_all=True)
print(grad_all(ms_function(forward))(x, w1, b1, w2, b2, w3, b3))
The result is as follows:
.. code-block::
(Tensor(shape=[2, 4], dtype=Float32, value=
[[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02, 5.12000000e+02],
[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02, 5.12000000e+02]]),
Tensor(shape=[4, 8], dtype=Float32, value=
[[ 2.56000000e+02, 2.56000000e+02, 2.56000000e+02 ... 2.56000000e+02, 2.56000000e+02, 2.56000000e+02],
[ 3.84000000e+02, 3.84000000e+02, 3.84000000e+02 ... 3.84000000e+02, 3.84000000e+02, 3.84000000e+02],
[ 5.12000000e+02, 5.12000000e+02, 5.12000000e+02 ... 5.12000000e+02, 5.12000000e+02, 5.12000000e+02]
[ 6.40000000e+02, 6.40000000e+02, 6.40000000e+02 ... 6.40000000e+02, 6.40000000e+02, 6.40000000e+02]]),
...
Tensor(shape=[4], dtype=Float32, value= [ 2.00000000e+00, 2.00000000e+00, 2.00000000e+00, 2.00000000e+00]))
For more details, see `API GradOperation <https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.GradOperation.html>`_ .
- Use mindspore.context to control execution mode
Most functions in `mindspore.numpy` can run in Graph Mode and PyNative Mode, and can run on CPU, GPU and Ascend. Like MindSpore, users can manage the execution mode using `mindspore.context`
.. code-block:: python
from mindspore import context
# Execucation in static graph mode
context.set_context(mode=context.GRAPH_MODE)
# Execucation in PyNative mode
context.set_context(mode=context.PYNATIVE_MODE)
# Execucation on CPU backend
context.set_context(device_target="CPU")
# Execucation on GPU backend
context.set_context(device_target="GPU")
# Execucation on Ascend backend
context.set_context(device_target="Ascend")
...
For more details, see `API mindspore.context <https://www.mindspore.cn/docs/en/master/api_python/mindspore.context.html>`_ .
- Use mindspore.numpy in MindSpore Deep Learning Models
`mindspore.numpy` interfaces can be used inside `nn.cell` blocks as well. For example, the above code can be modified to:
.. code-block:: python
import mindspore.numpy as np
from mindspore import context
from mindspore.nn import Cell
context.set_context(mode=context.GRAPH_MODE)
x = np.arange(8).reshape(2, 4).astype('float32')
w1 = np.ones((4, 8))
b1 = np.zeros((8,))
w2 = np.ones((8, 16))
b2 = np.zeros((16,))
w3 = np.ones((16, 4))
b3 = np.zeros((4,))
class NeuralNetwork(Cell):
def construct(self, x, w1, b1, w2, b2, w3, b3):
x = np.dot(x, w1) + b1
x = np.dot(x, w2) + b2
x = np.dot(x, w3) + b3
return x
net = NeuralNetwork()
print(net(x, w1, b1, w2, b2, w3, b3))
The result is as follows:
.. code-block::
[[ 768. 768. 768. 768.]
[2816. 2816. 2816. 2816.]]

View File

@ -0,0 +1,431 @@
mindspore.ops.functional
=============================
The functional operators are initialized Primitives and can be used directly as functions. An example of the use of the functional operator is as follows:
.. code-block:: python
from mindspore import Tensor, ops
from mindspore import dtype as mstype
input_x = Tensor(-1, mstype.int32)
input_dict = {'x':1, 'y':2}
result_abs = ops.absolute(input_x)
print(result_abs)
result_in_dict = ops.in_dict('x', input_dict)
print(result_in_dict)
result_not_in_dict = ops.not_in_dict('x', input_dict)
print(result_not_in_dict)
result_isconstant = ops.isconstant(input_x)
print(result_isconstant)
result_typeof = ops.typeof(input_x)
print(result_typeof)
# outputs:
# 1
# True
# False
# True
# Tensor[Int32]
Neural Network Layer Operators
------------------------------
Activation Functions
^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.tanh
Mathematical Operators
----------------------
Element-by-Element Operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.abs
mindspore.ops.acos
mindspore.ops.acosh
mindspore.ops.add
mindspore.ops.addn
mindspore.ops.asin
mindspore.ops.asinh
mindspore.ops.atan
mindspore.ops.atan2
mindspore.ops.atanh
mindspore.ops.bitwise_and
mindspore.ops.bitwise_or
mindspore.ops.bitwise_xor
mindspore.ops.cos
mindspore.ops.cosh
mindspore.ops.div
mindspore.ops.erf
mindspore.ops.erfc
mindspore.ops.exp
mindspore.ops.expm1
mindspore.ops.floor
mindspore.ops.floor_div
mindspore.ops.floor_mod
mindspore.ops.invert
mindspore.ops.log
mindspore.ops.logical_and
mindspore.ops.logical_not
mindspore.ops.logical_or
mindspore.ops.mul
mindspore.ops.neg
mindspore.ops.pow
mindspore.ops.sin
mindspore.ops.sinh
mindspore.ops.sub
mindspore.ops.tan
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.absolute
- `absolute` will be deprecated in the future. Please use `mindspore.ops.abs` instead.
* - mindspore.ops.floordiv
- `floordiv` will be deprecated in the future. Please use `mindspore.ops.floor_div` instead.
* - mindspore.ops.floormod
- `floormod` will be deprecated in the future. Please use `mindspore.ops.floor_mod` instead.
* - mindspore.ops.neg_tensor
- `neg_tensor` will be deprecated in the future. Please use `mindspore.ops.neg` instead.
* - mindspore.ops.pows
- `pows` will be deprecated in the future. Please use `mindspore.ops.pow` instead.
* - mindspore.ops.sqrt
- Refer to :class:`mindspore.ops.Sqrt`.
* - mindspore.ops.square
- Refer to :class:`mindspore.ops.Square`.
* - mindspore.ops.tensor_add
- `tensor_add` will be deprecated in the future. Please use `mindspore.ops.add` instead.
* - mindspore.ops.tensor_div
- `tensor_div` will be deprecated in the future. Please use `mindspore.ops.div` instead.
* - mindspore.ops.tensor_exp
- `tensor_exp` will be deprecated in the future. Please use `mindspore.ops.exp` instead.
* - mindspore.ops.tensor_expm1
- `tensor_expm1` will be deprecated in the future. Please use `mindspore.ops.expm1` instead.
* - mindspore.ops.tensor_floordiv
- `tensor_floordiv` will be deprecated in the future. Please use `mindspore.ops.floor_div` instead.
* - mindspore.ops.tensor_mod
- `tensor_mod` will be deprecated in the future. Please use `mindspore.ops.floor_mod` instead.
* - mindspore.ops.tensor_mul
- `tensor_mul` will be deprecated in the future. Please use `mindspore.ops.mul` instead.
* - mindspore.ops.tensor_pow
- `tensor_pow` will be deprecated in the future. Please use `mindspore.ops.pow` instead.
* - mindspore.ops.tensor_sub
- `tensor_sub` will be deprecated in the future. Please use `mindspore.ops.sub` instead.
Reduction Operators
^^^^^^^^^^^^^^^^^^^
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.reduce_max
- Refer to :class:`mindspore.ops.ReduceMax`.
* - mindspore.ops.reduce_mean
- Refer to :class:`mindspore.ops.ReduceMean`.
* - mindspore.ops.reduce_min
- Refer to :class:`mindspore.ops.ReduceMin`.
* - mindspore.ops.reduce_prod
- Refer to :class:`mindspore.ops.ReduceProd`.
* - mindspore.ops.reduce_sum
- Refer to :class:`mindspore.ops.ReduceSum`.
Comparison operators
^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.equal
mindspore.ops.ge
mindspore.ops.gt
mindspore.ops.isfinite
mindspore.ops.isnan
mindspore.ops.le
mindspore.ops.less
mindspore.ops.maximum
mindspore.ops.minimum
mindspore.ops.same_type_shape
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.check_bprop
- Refer to :class:`mindspore.ops.CheckBprop`.
* - mindspore.ops.isinstance\_
- Refer to :class:`mindspore.ops.IsInstance`.
* - mindspore.ops.issubclass\_
- Refer to :class:`mindspore.ops.IsSubClass`.
* - mindspore.ops.not_equal
- `not_equal` will be deprecated in the future. Please use `mindspore.ops.ne` instead.
* - mindspore.ops.tensor_ge
- `tensor_ge` will be deprecated in the future. Please use `mindspore.ops.ge` instead.
* - mindspore.ops.tensor_gt
- `tensor_gt` will be deprecated in the future. Please use `mindspore.ops.gt` instead.
* - mindspore.ops.tensor_le
- `tensor_le` will be deprecated in the future. Please use `mindspore.ops.le` instead.
* - mindspore.ops.tensor_lt
- `tensor_lt` will be deprecated in the future. Please use `mindspore.ops.less` instead.
Linear Algebraic Operators
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.matmul
Tensor Operation Operators
--------------------------
Tensor Building
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.eye
mindspore.ops.fill
mindspore.ops.ones
mindspore.ops.ones_like
mindspore.ops.zeros_like
Randomly Generating Operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.gamma
mindspore.ops.multinomial
mindspore.ops.poisson
Array Operation
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.expand_dims
mindspore.ops.gather
mindspore.ops.gather_d
mindspore.ops.gather_nd
mindspore.ops.rank
mindspore.ops.reshape
mindspore.ops.scatter_nd
mindspore.ops.select
mindspore.ops.shape
mindspore.ops.size
mindspore.ops.tile
mindspore.ops.transpose
mindspore.ops.unique
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.cast
- Refer to :class:`mindspore.ops.Cast`.
* - mindspore.ops.cumprod
- Refer to :class:`mindspore.ops.CumProd`.
* - mindspore.ops.cumsum
- Refer to :class:`mindspore.ops.CumSum`.
* - mindspore.ops.dtype
- Refer to :class:`mindspore.ops.DType`.
* - mindspore.ops.sort
- Refer to :class:`mindspore.ops.Sort`.
* - mindspore.ops.squeeze
- Refer to :class:`mindspore.ops.Squeeze`.
* - mindspore.ops.stack
- Refer to :class:`mindspore.ops.Stack`.
* - mindspore.ops.strided_slice
- Refer to :class:`mindspore.ops.StridedSlice`.
* - mindspore.ops.tensor_scatter_add
- Refer to :class:`mindspore.ops.TensorScatterAdd`.
* - mindspore.ops.tensor_scatter_update
- Refer to :class:`mindspore.ops.TensorScatterUpdate`.
* - mindspore.ops.tensor_slice
- `tensor_slice` will be deprecated in the future. Please use `mindspore.ops.slice` instead.
Type Conversion
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.scalar_cast
mindspore.ops.scalar_to_array
mindspore.ops.scalar_to_tensor
mindspore.ops.tuple_to_array
Parameter Operation Oprators
----------------------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.assign
mindspore.ops.assign_add
mindspore.ops.assign_sub
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.scatter_nd_update
- Refer to :class:`mindspore.ops.ScatterNdUpdate`.
* - mindspore.ops.scatter_update
- Refer to :class:`mindspore.ops.ScatterUpdate`.
Debugging Operators
-------------------
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.print\_
- Refer to :class:`mindspore.ops.Print`.
Other Operators
---------------
.. list-table::
:widths: 50 50
:header-rows: 1
* - functional
- Description
* - mindspore.ops.bool_and
- Calculate the result of logical AND operation. (Usage is the same as "and" in Python)
* - mindspore.ops.bool_eq
- Determine whether the Boolean values are equal. (Usage is the same as "==" in Python)
* - mindspore.ops.bool_not
- Calculate the result of logical NOT operation. (Usage is the same as "not" in Python)
* - mindspore.ops.bool_or
- Calculate the result of logical OR operation. (Usage is the same as "or" in Python)
* - mindspore.ops.depend
- Refer to :class:`mindspore.ops.Depend`.
* - mindspore.ops.in_dict
- Determine if a str in dict.
* - mindspore.ops.is_not
- Determine whether the input is not the same as the other one. (Usage is the same as "is not" in Python)
* - mindspore.ops.is\_
- Determine whether the input is the same as the other one. (Usage is the same as "is" in Python)
* - mindspore.ops.isconstant
- Determine whether the object is constant.
* - mindspore.ops.not_in_dict
- Determine whether the object is not in the dict.
* - mindspore.ops.partial
- Refer to :class:`mindspore.ops.Partial`.
* - mindspore.ops.scalar_add
- Get the sum of two numbers. (Usage is the same as "+" in Python)
* - mindspore.ops.scalar_div
- Get the quotient of dividing the first input number by the second input number. (Usage is the same as "/" in Python)
* - mindspore.ops.scalar_eq
- Determine whether two numbers are equal. (Usage is the same as "==" in Python)
* - mindspore.ops.scalar_floordiv
- Divide the first input number by the second input number and round down to the closest integer. (Usage is the same as "//" in Python)
* - mindspore.ops.scalar_ge
- Determine whether the number is greater than or equal to another number. (Usage is the same as ">=" in Python)
* - mindspore.ops.scalar_gt
- Determine whether the number is greater than another number. (Usage is the same as ">" in Python)
* - mindspore.ops.scalar_le
- Determine whether the number is less than or equal to another number. (Usage is the same as "<=" in Python)
* - mindspore.ops.scalar_log
- Get the natural logarithm of the input number.
* - mindspore.ops.scalar_lt
- Determine whether the number is less than another number. (Usage is the same as "<" in Python)
* - mindspore.ops.scalar_mod
- Get the remainder of dividing the first input number by the second input number. (Usage is the same as "%" in Python)
* - mindspore.ops.scalar_mul
- Get the product of the input two numbers. (Usage is the same as "*" in Python)
* - mindspore.ops.scalar_ne
- Determine whether two numbers are not equal. (Usage is the same as "!=" in Python)
* - mindspore.ops.scalar_pow
- Compute a number to the power of the second input number.
* - mindspore.ops.scalar_sub
- Subtract the second input number from the first input number. (Usage is the same as "-" in Python)
* - mindspore.ops.scalar_uadd
- Get the positive value of the input number.
* - mindspore.ops.scalar_usub
- Get the negative value of the input number.
* - mindspore.ops.shape_mul
- The input of shape_mul must be shape multiply elements in tuple(shape).
* - mindspore.ops.stop_gradient
- Disable update during back propagation. (`stop_gradient <https://www.mindspore.cn/tutorials/en/master/beginner/autograd.html#stopping-gradient>`_)
* - mindspore.ops.string_concat
- Concatenate two strings.
* - mindspore.ops.string_eq
- Determine if two strings are equal.
* - mindspore.ops.typeof
- Get type of object.
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.arange
mindspore.ops.batch_dot
mindspore.ops.clip_by_global_norm
mindspore.ops.clip_by_value
mindspore.ops.core
mindspore.ops.count_nonzero
mindspore.ops.cummin
mindspore.ops.dot
mindspore.ops.grad
mindspore.ops.jvp
mindspore.ops.laplace
mindspore.ops.narrow
mindspore.ops.normal
mindspore.ops.repeat_elements
mindspore.ops.sequence_mask
mindspore.ops.tensor_dot
mindspore.ops.uniform
mindspore.ops.vjp

View File

@ -0,0 +1,609 @@
mindspore.ops
=============
operators that can be used for constructor function of Cell
.. code-block::
import mindspore.ops as ops
Compared with the previous version, the added, deleted and supported platforms change information of `mindspore.ops` operators in MindSpore, please refer to the link `<https://gitee.com/mindspore/docs/blob/master/resource/api_updates/ops_api_updates.md>`_.
Operator Primitives
-------------------
.. autosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Primitive
mindspore.ops.PrimitiveWithCheck
mindspore.ops.PrimitiveWithInfer
Decorators
----------
.. autosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.constexpr
mindspore.ops.custom_info_register
mindspore.ops.ms_hybrid
mindspore.ops.op_info_register
mindspore.ops.prim_attr_register
Neural Network Layer Operators
------------------------------
Neural Network
^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.AvgPool
mindspore.ops.AvgPool3D
mindspore.ops.BasicLSTMCell
mindspore.ops.BatchNorm
mindspore.ops.Conv2D
mindspore.ops.Conv2DBackpropInput
mindspore.ops.Conv2DTranspose
mindspore.ops.Conv3D
mindspore.ops.Conv3DTranspose
mindspore.ops.CTCGreedyDecoder
mindspore.ops.DepthwiseConv2dNative
mindspore.ops.Dropout
mindspore.ops.Dropout2D
mindspore.ops.Dropout3D
mindspore.ops.DropoutDoMask
mindspore.ops.DropoutGenMask
mindspore.ops.DynamicGRUV2
mindspore.ops.DynamicRNN
mindspore.ops.Flatten
mindspore.ops.LayerNorm
mindspore.ops.LRN
mindspore.ops.LSTM
mindspore.ops.MaxPool
mindspore.ops.MaxPool3D
mindspore.ops.MaxPoolWithArgmax
mindspore.ops.MirrorPad
mindspore.ops.Pad
mindspore.ops.EmbeddingLookup
mindspore.ops.Padding
mindspore.ops.ResizeNearestNeighbor
mindspore.ops.ResizeBilinear
Loss Function
^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.BCEWithLogitsLoss
mindspore.ops.BinaryCrossEntropy
mindspore.ops.CTCLoss
mindspore.ops.KLDivLoss
mindspore.ops.L2Loss
mindspore.ops.NLLLoss
mindspore.ops.RNNTLoss
mindspore.ops.SigmoidCrossEntropyWithLogits
mindspore.ops.SmoothL1Loss
mindspore.ops.SoftMarginLoss
mindspore.ops.SoftmaxCrossEntropyWithLogits
mindspore.ops.SparseSoftmaxCrossEntropyWithLogits
Activation Function
^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Elu
mindspore.ops.FastGeLU
mindspore.ops.GeLU
mindspore.ops.HShrink
mindspore.ops.HSigmoid
mindspore.ops.HSwish
mindspore.ops.LogSoftmax
mindspore.ops.Mish
mindspore.ops.PReLU
mindspore.ops.ReLU
mindspore.ops.ReLU6
mindspore.ops.ReLUV2
mindspore.ops.SeLU
mindspore.ops.Sigmoid
mindspore.ops.Softmax
mindspore.ops.Softplus
mindspore.ops.SoftShrink
mindspore.ops.Softsign
mindspore.ops.Tanh
Optimizer
^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Adam
mindspore.ops.AdamNoUpdateParam
mindspore.ops.AdamWeightDecay
mindspore.ops.AdaptiveAvgPool2D
mindspore.ops.ApplyAdadelta
mindspore.ops.ApplyAdagrad
mindspore.ops.ApplyAdagradDA
mindspore.ops.ApplyAdagradV2
mindspore.ops.ApplyAdaMax
mindspore.ops.ApplyAddSign
mindspore.ops.ApplyCenteredRMSProp
mindspore.ops.ApplyFtrl
mindspore.ops.ApplyGradientDescent
mindspore.ops.ApplyMomentum
mindspore.ops.ApplyPowerSign
mindspore.ops.ApplyProximalAdagrad
mindspore.ops.ApplyProximalGradientDescent
mindspore.ops.ApplyRMSProp
mindspore.ops.FusedSparseAdam
mindspore.ops.FusedSparseFtrl
mindspore.ops.FusedSparseLazyAdam
mindspore.ops.FusedSparseProximalAdagrad
mindspore.ops.LARSUpdate
mindspore.ops.SparseApplyAdagrad
mindspore.ops.SparseApplyAdagradV2
mindspore.ops.SparseApplyProximalAdagrad
mindspore.ops.SGD
mindspore.ops.SparseApplyFtrl
mindspore.ops.SparseApplyFtrlV2
Distance Function
^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Cdist
mindspore.ops.EditDistance
mindspore.ops.LpNorm
Sampling Operator
^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.ComputeAccidentalHits
mindspore.ops.LogUniformCandidateSampler
mindspore.ops.UniformCandidateSampler
Image Processing
^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.BoundingBoxDecode
mindspore.ops.BoundingBoxEncode
mindspore.ops.CheckValid
mindspore.ops.CropAndResize
mindspore.ops.ExtractVolumePatches
mindspore.ops.IOU
mindspore.ops.L2Normalize
mindspore.ops.NMSWithMask
mindspore.ops.ROIAlign
Text Processing
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.NoRepeatNGram
Mathematical Operators
----------------------
Element-by-Element Operation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Abs
mindspore.ops.AccumulateNV2
mindspore.ops.ACos
mindspore.ops.Acosh
mindspore.ops.Add
mindspore.ops.Addcdiv
mindspore.ops.Addcmul
mindspore.ops.AddN
mindspore.ops.Asin
mindspore.ops.Asinh
mindspore.ops.Atan
mindspore.ops.Atan2
mindspore.ops.Atanh
mindspore.ops.BesselI0e
mindspore.ops.BesselI1e
mindspore.ops.BitwiseAnd
mindspore.ops.BitwiseOr
mindspore.ops.BitwiseXor
mindspore.ops.Ceil
mindspore.ops.Conj
mindspore.ops.Cos
mindspore.ops.Cosh
mindspore.ops.Div
mindspore.ops.DivNoNan
mindspore.ops.Einsum
mindspore.ops.Erf
mindspore.ops.Erfc
mindspore.ops.Erfinv
mindspore.ops.Exp
mindspore.ops.Expm1
mindspore.ops.Floor
mindspore.ops.FloorDiv
mindspore.ops.FloorMod
mindspore.ops.Imag
mindspore.ops.Inv
mindspore.ops.Invert
mindspore.ops.Lerp
mindspore.ops.Log
mindspore.ops.Log1p
mindspore.ops.LogicalAnd
mindspore.ops.LogicalNot
mindspore.ops.LogicalOr
mindspore.ops.Mod
mindspore.ops.Mul
mindspore.ops.MulNoNan
mindspore.ops.Neg
mindspore.ops.Pow
mindspore.ops.Real
mindspore.ops.RealDiv
mindspore.ops.Reciprocal
mindspore.ops.Rint
mindspore.ops.Round
mindspore.ops.Rsqrt
mindspore.ops.Sign
mindspore.ops.Sin
mindspore.ops.Sinh
mindspore.ops.Sqrt
mindspore.ops.Square
mindspore.ops.SquaredDifference
mindspore.ops.SquareSumAll
mindspore.ops.Sub
mindspore.ops.Tan
mindspore.ops.TruncateDiv
mindspore.ops.TruncateMod
mindspore.ops.Xdivy
mindspore.ops.Xlogy
Reduction Operator
^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Argmax
mindspore.ops.ArgMaxWithValue
mindspore.ops.Argmin
mindspore.ops.ArgMinWithValue
mindspore.ops.ReduceAll
mindspore.ops.ReduceAny
mindspore.ops.ReduceMax
mindspore.ops.ReduceMean
mindspore.ops.ReduceMin
mindspore.ops.ReduceProd
mindspore.ops.ReduceSum
Comparison Operator
^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.ApproximateEqual
mindspore.ops.CheckBprop
mindspore.ops.Equal
mindspore.ops.EqualCount
mindspore.ops.Greater
mindspore.ops.GreaterEqual
mindspore.ops.InTopK
mindspore.ops.IsFinite
mindspore.ops.IsInf
mindspore.ops.IsInstance
mindspore.ops.IsNan
mindspore.ops.IsSubClass
mindspore.ops.Less
mindspore.ops.LessEqual
mindspore.ops.Maximum
mindspore.ops.Minimum
mindspore.ops.NotEqual
mindspore.ops.SameTypeShape
mindspore.ops.TopK
Linear Algebraic Operator
^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.BatchMatMul
mindspore.ops.BiasAdd
mindspore.ops.Ger
mindspore.ops.MatMul
mindspore.ops.MatrixInverse
Tensor Operation Opertor
------------------------
Tensor Construction
^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Eps
mindspore.ops.Eye
mindspore.ops.Fill
mindspore.ops.LinSpace
mindspore.ops.OneHot
mindspore.ops.Ones
mindspore.ops.OnesLike
mindspore.ops.Zeros
mindspore.ops.ZerosLike
Random Generation Operator
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Gamma
mindspore.ops.Multinomial
mindspore.ops.Poisson
mindspore.ops.RandomCategorical
mindspore.ops.RandomChoiceWithMask
mindspore.ops.Randperm
mindspore.ops.StandardLaplace
mindspore.ops.StandardNormal
mindspore.ops.UniformInt
mindspore.ops.UniformReal
Array Operation
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.BatchToSpace
mindspore.ops.BatchToSpaceND
mindspore.ops.BroadcastTo
mindspore.ops.Cast
mindspore.ops.Concat
mindspore.ops.CumProd
mindspore.ops.CumSum
mindspore.ops.DataFormatDimMap
mindspore.ops.DepthToSpace
mindspore.ops.DType
mindspore.ops.DynamicShape
mindspore.ops.ExpandDims
mindspore.ops.FloatStatus
mindspore.ops.Gather
mindspore.ops.GatherD
mindspore.ops.GatherNd
mindspore.ops.HistogramFixedWidth
mindspore.ops.Identity
mindspore.ops.IndexAdd
mindspore.ops.InplaceAdd
mindspore.ops.InplaceSub
mindspore.ops.InplaceUpdate
mindspore.ops.InvertPermutation
mindspore.ops.MaskedFill
mindspore.ops.MaskedSelect
mindspore.ops.Meshgrid
mindspore.ops.ParallelConcat
mindspore.ops.PopulationCount
mindspore.ops.Rank
mindspore.ops.Reshape
mindspore.ops.ReverseSequence
mindspore.ops.ReverseV2
mindspore.ops.ScatterNd
mindspore.ops.Select
mindspore.ops.Shape
mindspore.ops.Size
mindspore.ops.Slice
mindspore.ops.Sort
mindspore.ops.SpaceToBatch
mindspore.ops.SpaceToBatchND
mindspore.ops.SpaceToDepth
mindspore.ops.SparseGatherV2
mindspore.ops.Split
mindspore.ops.SplitV
mindspore.ops.Squeeze
mindspore.ops.Stack
mindspore.ops.StridedSlice
mindspore.ops.TensorScatterAdd
mindspore.ops.TensorScatterMax
mindspore.ops.TensorScatterMin
mindspore.ops.TensorScatterSub
mindspore.ops.TensorScatterUpdate
mindspore.ops.TensorShape
mindspore.ops.Tile
mindspore.ops.Transpose
mindspore.ops.Unique
mindspore.ops.UniqueWithPad
mindspore.ops.UnsortedSegmentMax
mindspore.ops.UnsortedSegmentMin
mindspore.ops.UnsortedSegmentProd
mindspore.ops.UnsortedSegmentSum
mindspore.ops.Unstack
Type Conversion
^^^^^^^^^^^^^^^
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.ScalarCast
mindspore.ops.ScalarToArray
mindspore.ops.ScalarToTensor
mindspore.ops.TupleToArray
Parameter Operation Operator
----------------------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Assign
mindspore.ops.AssignAdd
mindspore.ops.AssignSub
mindspore.ops.ScatterAdd
mindspore.ops.ScatterDiv
mindspore.ops.ScatterMax
mindspore.ops.ScatterMin
mindspore.ops.ScatterMul
mindspore.ops.ScatterNdAdd
mindspore.ops.ScatterNdSub
mindspore.ops.ScatterNdUpdate
mindspore.ops.ScatterNonAliasingAdd
mindspore.ops.ScatterSub
mindspore.ops.ScatterUpdate
Data Operation Operator
-----------------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.GetNext
Communication Operator
----------------------
Note that the APIs in the following list need to preset communication environment variables. For
the Ascend devices, users need to prepare the rank table, set rank_id and device_id. Please see the `Ascend tutorial \
<https://www.mindspore.cn/tutorials/experts/en/master/parallel/train_ascend.html#configuring-distributed-environment-variables>`_ for more details.
For the GPU device, users need to prepare the host file and mpi, please see the `GPU tutorial \
<https://www.mindspore.cn/tutorials/experts/en/master/parallel/train_gpu.html#preparation>`_.
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.AllGather
mindspore.ops.AllReduce
mindspore.ops.AlltoAll
mindspore.ops.Broadcast
mindspore.ops.NeighborExchange
mindspore.ops.NeighborExchangeV2
mindspore.ops.ReduceOp
mindspore.ops.ReduceScatter
Debugging Operator
------------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.HistogramSummary
mindspore.ops.ImageSummary
mindspore.ops.ScalarSummary
mindspore.ops.TensorSummary
mindspore.ops.Print
mindspore.ops.NPUAllocFloatStatus
mindspore.ops.NPUClearFloatStatus
mindspore.ops.NPUGetFloatStatus
Sparse Operator
---------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.SparseTensorDenseMatmul
mindspore.ops.SparseToDense
Other Operators
---------------
.. msplatformautosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Depend
mindspore.ops.GradOperation
mindspore.ops.HookBackward
mindspore.ops.HyperMap
mindspore.ops.InsertGradientOf
mindspore.ops.Map
mindspore.ops.MultitypeFuncGraph
mindspore.ops.Partial
Operator Information Registration
---------------------------------
.. autosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.AiCPURegOp
mindspore.ops.CustomRegOp
mindspore.ops.DataType
mindspore.ops.TBERegOp
mindspore.ops.get_vm_impl_fn
Customizing Operator
--------------------
.. autosummary::
:toctree: ops
:nosignatures:
:template: classtemplate.rst
mindspore.ops.Custom

View File

@ -0,0 +1,12 @@
mindspore.parallel.nn
======================
The import path of Transformer APIs have been modified from `mindspore.parallel.nn` to `mindspore.nn.transformer`, while the usage of these APIs stay unchanged. The original import path will retain one or two versions. You can view the changes using the examples described below
::
# r1.5
from mindspore.parallel.nn import Transformer
# Current
from mindspore.nn.transformer import Transformer

View File

@ -0,0 +1,5 @@
mindspore.parallel
==================
.. automodule:: mindspore.parallel
:members:

View File

@ -0,0 +1,5 @@
mindspore.profiler
==================
.. automodule:: mindspore.profiler
:members:

View File

@ -0,0 +1,270 @@
mindspore
=========
Tensor
------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.Tensor
mindspore.COOTensor
mindspore.CSRTensor
mindspore.RowTensor
mindspore.SparseTensor
Parameter
---------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.Parameter
mindspore.ParameterTuple
DataType
--------
.. class:: mindspore.dtype
Create a data type object of MindSpore.
The actual path of ``dtype`` is ``/mindspore/common/dtype.py``.
Run the following command to import the package:
.. code-block::
from mindspore import dtype as mstype
* **Numeric Type**
Currently, MindSpore supports ``Int`` type, ``Uint`` type, ``Float`` type and ``Complex`` type.
The following table lists the details.
============================================== =============================
Definition Description
============================================== =============================
``mindspore.int8`` , ``mindspore.byte`` 8-bit integer
``mindspore.int16`` , ``mindspore.short`` 16-bit integer
``mindspore.int32`` , ``mindspore.intc`` 32-bit integer
``mindspore.int64`` , ``mindspore.intp`` 64-bit integer
``mindspore.uint8`` , ``mindspore.ubyte`` unsigned 8-bit integer
``mindspore.uint16`` , ``mindspore.ushort`` unsigned 16-bit integer
``mindspore.uint32`` , ``mindspore.uintc`` unsigned 32-bit integer
``mindspore.uint64`` , ``mindspore.uintp`` unsigned 64-bit integer
``mindspore.float16`` , ``mindspore.half`` 16-bit floating-point number
``mindspore.float32`` , ``mindspore.single`` 32-bit floating-point number
``mindspore.float64`` , ``mindspore.double`` 64-bit floating-point number
``mindspore.complex64`` 64-bit complex number
``mindspore.complex128`` 128-bit complex number
============================================== =============================
* **Other Type**
For other defined types, see the following table.
============================ =================
Type Description
============================ =================
``tensor`` MindSpore's ``tensor`` type. Data format uses NCHW. For details, see `tensor <https://www.gitee.com/mindspore/mindspore/blob/master/mindspore/python/mindspore/common/tensor.py>`_.
``bool_`` Boolean ``True`` or ``False``.
``int_`` Integer scalar.
``uint`` Unsigned integer scalar.
``float_`` Floating-point scalar.
``complex`` Complex scalar.
``number`` Number, including ``int_`` , ``uint`` , ``float_`` , ``complex`` and ``bool_`` .
``list_`` List constructed by ``tensor`` , such as ``List[T0,T1,...,Tn]`` , where the element ``Ti`` can be of different types.
``tuple_`` Tuple constructed by ``tensor`` , such as ``Tuple[T0,T1,...,Tn]`` , where the element ``Ti`` can be of different types.
``function`` Function. Return in two ways, when function is not None, returns Func directly, the other returns Func(args: List[T0,T1,...,Tn], retval: T) when function is None.
``type_type`` Type definition of type.
``type_none`` No matching return type, corresponding to the ``type(None)`` in Python.
``symbolic_key`` The value of a variable is used as a key of the variable in ``env_type`` .
``env_type`` Used to store the gradient of the free variable of a function, where the key is the ``symbolic_key`` of the free variable's node and the value is the gradient.
============================ =================
* **Tree Topology**
The relationships of the above types are as follows:
.. code-block::
└─────── number
│ ├─── bool_
│ ├─── int_
│ │ ├─── int8, byte
│ │ ├─── int16, short
│ │ ├─── int32, intc
│ │ └─── int64, intp
│ ├─── uint
│ │ ├─── uint8, ubyte
│ │ ├─── uint16, ushort
│ │ ├─── uint32, uintc
│ │ └─── uint64, uintp
│ ├─── float_
│ │ ├─── float16
│ │ ├─── float32
│ │ └─── float64
│ └─── complex
│ ├─── complex64
│ └─── complex128
├─── tensor
│ ├─── Array[Float32]
│ └─── ...
├─── list_
│ ├─── List[Int32,Float32]
│ └─── ...
├─── tuple_
│ ├─── Tuple[Int32,Float32]
│ └─── ...
├─── function
│ ├─── Func
│ ├─── Func[(Int32, Float32), Int32]
│ └─── ...
├─── type_type
├─── type_none
├─── symbolic_key
└─── env_type
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.dtype_to_nptype
mindspore.issubclass_
mindspore.dtype_to_pytype
mindspore.pytype_to_dtype
mindspore.get_py_obj_dtype
Seed
----
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.set_seed
mindspore.get_seed
Model
-----
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.Model
Dataset Helper
---------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.DatasetHelper
mindspore.connect_network_with_dataset
Loss Scale Manager
-------------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.LossScaleManager
mindspore.FixedLossScaleManager
mindspore.DynamicLossScaleManager
Serialization
-------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.save_checkpoint
mindspore.load_checkpoint
mindspore.load_param_into_net
mindspore.export
mindspore.load
mindspore.parse_print
mindspore.build_searched_strategy
mindspore.merge_sliced_parameter
mindspore.load_distributed_checkpoint
mindspore.async_ckpt_thread_status
mindspore.restore_group_info_list
JIT
---
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.ms_function
mindspore.ms_class
Log
---
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.get_level
mindspore.get_log_config
Automatic Mixed Precision
-------------------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.build_train_network
Installation Verification
--------------------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.run_check
Debugging
--------------------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.set_dump
Memory Recycle
--------------------------
.. autosummary::
:toctree: mindspore
:nosignatures:
:template: classtemplate.rst
mindspore.ms_memory_recycle

View File

@ -0,0 +1,50 @@
mindspore.scipy
===============
.. automodule:: mindspore.scipy
mindspore.scipy.linalg
----------------------
.. automodule:: mindspore.scipy.linalg
.. msplatformautosummary::
:toctree: scipy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.scipy.linalg.block_diag
mindspore.scipy.linalg.cho_factor
mindspore.scipy.linalg.cholesky
mindspore.scipy.linalg.cho_solve
mindspore.scipy.linalg.eigh
mindspore.scipy.linalg.inv
mindspore.scipy.linalg.lu
mindspore.scipy.linalg.lu_factor
mindspore.scipy.linalg.solve_triangular
mindspore.scipy.optimize
------------------------
.. automodule:: mindspore.scipy.optimize
.. msplatformautosummary::
:toctree: scipy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.scipy.optimize.line_search
mindspore.scipy.optimize.minimize
mindspore.scipy.sparse.linalg
-----------------------------
.. automodule:: mindspore.scipy.sparse.linalg
.. msplatformautosummary::
:toctree: scipy
:nosignatures:
:template: classtemplate_inherited.rst
mindspore.scipy.sparse.linalg.cg
mindspore.scipy.sparse.linalg.gmres

View File

@ -0,0 +1,21 @@
mindspore.train
===============
mindspore.train.summary
-----------------------
.. automodule:: mindspore.train.summary
:members:
mindspore.train.callback
------------------------
.. automodule:: mindspore.train.callback
:exclude-members: FederatedLearningManager
:members:
mindspore.train.train_thor
--------------------------
.. automodule:: mindspore.train.train_thor
:members:

View File

@ -0,0 +1,47 @@
.. py:method:: forward(value)
forward mapping, compute the value after mapping as :math:`Y = \exp(X)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value of output after mapping.
.. py:method:: forward_log_jacobian(value)
compute the log value after mapping, namely :math:`\log(d\exp(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of forward mapping.
.. py:method:: inverse(value)
Inverse mapping, compute the value after inverse mapping as :math:`X = \log(Y)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the value to compute.
.. py:method:: inverse_log_jacobian(value)
Compute the log value of the inverse mapping, namely :math:`\log(d\log(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the log value of the inverse mapping.

View File

@ -0,0 +1,65 @@
.. py:method:: loc
:property:
Return the loc parameter of the bijector.
**Returns**
Tensor, the loc parameter of the bijector.
.. py:method:: scale
:property:
Return the scale parameter of the bijector.
**Returns**
Tensor, the scale parameter of the bijector.
.. py:method:: forward(value)
forward mapping, compute the value after mapping as :math:`Y = g(X)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value to compute.
.. py:method:: forward_log_jacobian(value)
compute the log value after mapping, namely :math:`\log(dg(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of forward mapping.
.. py:method:: inverse(value)
Inverse mapping, compute the value after inverse mapping as :math:`X = g(X)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the value of output after mapping.
.. py:method:: inverse_log_jacobian(value)
Compute the log value of the inverse mapping, namely :math:`\log(dg^{-1}(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the log value of the inverse mapping.

View File

@ -0,0 +1,53 @@
.. py:method:: bijector
:property:
Return base bijector.
.. py:method:: forward(x)
Compute the inverse mapping of underlying Bijector, namely :math:`Y = h(X) = g^{-1}(X)` .
**Parameters**
- **x** (Tensor) - the value of output after mapping by the underlying bijector.
**Returns**
Tensor, the inverse mapping of underlying Bijector.
.. py:method:: forward_log_jacobian(x)
Compute the log value of the inverse mapping of underlying Bijector :math:`\log dg^{-1}(x) / dx`.
**Parameters**
- **x** (Tensor) - the value of output after mapping by the underlying bijector.
**Returns**
Tensor, the log value of the inverse mapping of underlying Bijector.
.. py:method:: inverse(y)
Compute the forward mapping of underlying Bijector, namely :math:`Y = g(X)`.
**Parameters**
- **y** (Tensor) - the value to compute by the underlying bijector.
**Returns**
Tensor, the forward mapping of underlying Bijector.
.. py:method:: inverse_log_jacobian(y)
Compute the log value of the forward mapping of underlying Bijector, namely :math:`Y = \log dg(x) / dx`.
**Parameters**
- **y** (Tensor) - the value to compute by the underlying bijector.
**Returns**
Tensor, the log value of forward mapping of underlying Bijector.

View File

@ -0,0 +1,56 @@
.. py:method:: power
:property:
Return the power index.
**Returns**
Tensor, the power index.
.. py:method:: forward(value)
forward mapping, compute the value after mapping as :math:`Y = g(X)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value to compute.
.. py:method:: forward_log_jacobian(value)
compute the log value after mapping, namely :math:`\log(dg(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of forward mapping.
.. py:method:: inverse(value)
Inverse mapping, compute the value after inverse mapping as :math:`X = g(value)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the value of output after mapping.
.. py:method:: inverse_log_jacobian(value)
Compute the log value of the inverse mapping, namely :math:`\log(dg^{-1}(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the log value of the inverse mapping.

View File

@ -0,0 +1,65 @@
.. py:method:: shift
:property:
Return the shift parameter of the bijector.
**Returns**
Tensor, the shift parameter of the bijector.
.. py:method:: scale
:property:
Return the scale parameter of the bijector.
**Returns**
Tensor, the scale parameter of the bijector.
.. py:method:: forward(value)
forward mapping, compute the value after mapping as :math:`Y = g(X)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value to compute.
.. py:method:: forward_log_jacobian(value)
compute the log value after mapping, namely :math:`\log(dg(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of forward mapping.
.. py:method:: inverse(value)
Inverse mapping, compute the value after inverse mapping as :math:`X = g(value)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the value of output after mapping.
.. py:method:: inverse_log_jacobian(value)
Compute the log value of the inverse mapping, namely :math:`\log(dg^{-1}(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the log value of the inverse mapping.

View File

@ -0,0 +1,56 @@
.. py:method:: sharpness
:property:
Return the sharpness parameter of the distribution.
**Returns**
Tensor, the sharpness parameter of the distribution.
.. py:method:: forward(value)
forward mapping, compute the value after mapping as :math:`Y = g(X)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value to compute.
.. py:method:: forward_log_jacobian(value)
compute the log value after mapping, namely :math:`\log(dg(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of forward mapping.
.. py:method:: inverse(value)
Inverse mapping, compute the value after inverse mapping as :math:`X = g(value)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the value of output after mapping.
.. py:method:: inverse_log_jacobian(value)
Compute the log value of the inverse mapping, namely :math:`\log(dg^{-1}(x) / dx)`.
**Parameters**
- **value** (Tensor) - the value of output after mapping.
**Returns**
Tensor, the log value of the inverse mapping.

View File

@ -0,0 +1,187 @@
.. py:method:: probs
:property:
Return the probability of success, namely the output is 1.
**Returns**
Tensor, the probability of success.
.. py:method:: cdf(value, probs1)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, probs1_b, probs1_a)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs1_b** (Tensor) - the probability of success of the other distribution.
- **probs1_a** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(probs1)
Compute the value of the entropy.
**Parameters**
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, probs1_b, probs1_a)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs1_b** (Tensor) - the probability of success of the other distribution.
- **probs1_a** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, probs1)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, probs1)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, probs1)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(probs1)
Compute the mean value of the distribution.
**Parameters**
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(probs1)
Compute the mode value of the distribution.
**Parameters**
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, probs1)
The probability of the given value. For the discrete distribution, it is the probability mass function(pmf).
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, probs1)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(probs1)
The standard deviation.
**Parameters**
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, probs1)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(probs1)
Compute the variance of the distribution.
**Parameters**
- **probs1** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,212 @@
.. py:method:: concentration0
:property:
Return concentration0, aka the beta parameter of the Beta distribution.
**Returns**
Tensor, the value of concentration0.
.. py:method:: concentration1
:property:
Return concentration1, aka the alpha parameter of the Beta distribution.
**Returns**
Tensor, the value of concentration1.
.. py:method:: cdf(value, concentration1, concentration0)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, concentration1_b, concentration0_b, concentration1, concentration0)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **concentration1_b** (Tensor) - the alpha parameter of the other Beta distribution.
- **concentration0_b** (Tensor) - the beta parameter of the other Beta distribution.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(concentration1, concentration0)
Compute the value of the entropy.
**Parameters**
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, concentration1_b, concentration0_b, concentration1, concentration0)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **concentration1_b** (Tensor) - the alpha parameter of the other Beta distribution.
- **concentration0_b** (Tensor) - the beta parameter of the other Beta distribution.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, concentration1, concentration0)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, concentration1, concentration0)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, concentration1, concentration0)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(concentration1, concentration0)
Compute the mean value of the distribution.
**Parameters**
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(concentration1, concentration0)
Compute the mode value of the distribution.
**Parameters**
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, concentration1, concentration0)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, concentration1, concentration0)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(concentration1, concentration0)
The standard deviation.
**Parameters**
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, concentration1, concentration0)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(concentration1, concentration0)
Compute the variance of the distribution.
**Parameters**
- **concentration1** (Tensor) - the alpha parameter of the Beta distribution. Default value: None.
- **concentration0** (Tensor) - the beta parameter of the Beta distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,187 @@
.. py:method:: probs
:property:
Return the event probability.
**Returns**
Tensor, the event probability.
.. py:method:: cdf(value, probs)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, probs_b, probs)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs_b** (Tensor) - the event probability of the other distribution.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(probs)
Compute the value of the entropy.
**Parameters**
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, probs_b, probs)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs_b** (Tensor) - the event probability of the other distribution.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, probs)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, probs)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, probs)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(probs)
Compute the mean value of the distribution.
**Parameters**
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(probs)
Compute the mode value of the distribution.
**Parameters**
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, probs)
The probability of the given value. For the discrete distribution, it is the probability mass function(pmf).
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, probs)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(probs)
The standard deviation.
**Parameters**
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, probs)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(probs)
Compute the variance of the distribution.
**Parameters**
- **probs** (Tensor) - the event probability. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,187 @@
.. py:method:: rate
:property:
Return rate.
**Returns**
Tensor, the rate of the distribution.
.. py:method:: cdf(value, rate)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, rate_b, rate)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **rate_b** (Tensor) - the rate of the other distribution.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(rate)
Compute the value of the entropy.
**Parameters**
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, rate_b, rate)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **rate_b** (Tensor) - the rate of the other distribution.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, rate)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, rate)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, rate)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(rate)
Compute the mean value of the distribution.
**Parameters**
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(rate)
Compute the mode value of the distribution.
**Parameters**
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, rate)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, rate)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(rate)
The standard deviation.
**Parameters**
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, rate)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(rate)
Compute the variance of the distribution.
**Parameters**
- **rate** (Tensor) - the rate of the distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,212 @@
.. py:method:: concentration
:property:
Return the concentration, aka the alpha parameter, of the distribution.
**Returns**
Tensor, concentration.
.. py:method:: rate
:property:
Return the rate, aka the beta parameter, of the distribution.
**Returns**
Tensor, rate.
.. py:method:: cdf(value, concentration, rate)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, concentration_b, rate_b, concentration, rate)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **concentration_b** (Tensor) - the alpha parameter of the other distribution.
- **rate_b** (Tensor) - the beta parameter of the other distribution.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(concentration, rate)
Compute the value of the entropy.
**Parameters**
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, concentration_b, rate_b, concentration, rate)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **concentration_b** (Tensor) - the alpha parameter of the other distribution.
- **rate_b** (Tensor) - the beta parameter of the other distribution.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, concentration, rate)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, concentration, rate)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, concentration, rate)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(concentration, rate)
Compute the mean value of the distribution.
**Parameters**
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(concentration, rate)
Compute the mode value of the distribution.
**Parameters**
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, concentration, rate)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, concentration, rate)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(concentration, rate)
The standard deviation.
**Parameters**
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, concentration, rate)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(concentration, rate)
Compute the variance of the distribution.
**Parameters**
- **concentration** (Tensor) - the alpha parameter of the distribution. Default value: None.
- **rate** (Tensor) - the beta parameter of the distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,212 @@
.. py:method:: loc
:property:
Return the loc parameter of the distribution.
**Returns**
Tensor, the loc parameter of the distribution.
.. py:method:: scale
:property:
Return the scale parameter of the distribution.
**Returns**
Tensor, the scale parameter of the distribution.
.. py:method:: cdf(value, loc, scale)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, loc_b, scale_b, loc, scale)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **loc_b** (Tensor) - the loc parameter of the other distribution.
- **scale_b** (Tensor) - the scale parameter of the other distribution.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(loc, scale)
Compute the value of the entropy.
**Parameters**
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, loc_b, scale_b, loc, scale)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **loc_b** (Tensor) - the loc parameter of the other distribution.
- **scale_b** (Tensor) - the scale parameter of the other distribution.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, loc, scale)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, loc, scale)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, loc, scale)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(loc, scale)
Compute the mean value of the distribution.
**Parameters**
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(loc, scale)
Compute the mode value of the distribution.
**Parameters**
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, loc, scale)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, loc, scale)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(loc, scale)
The standard deviation.
**Parameters**
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, loc, scale)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(loc, scale)
Compute the variance of the distribution.
**Parameters**
- **loc** (Tensor) - the loc parameter of the distribution. Default value: None.
- **scale** (Tensor) - the scale parameter of the distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,187 @@
.. py:method:: probs
:property:
Return the probability of success.
**Returns**
Tensor, the probability of success.
.. py:method:: cdf(value, probs)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, probs_b, probs)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs_b** (Tensor) - the probability of success of the other distribution.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(probs)
Compute the value of the entropy.
**Parameters**
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, probs_b, probs)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **probs_b** (Tensor) - the probability of success of the other distribution.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, probs)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, probs)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, probs)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(probs)
Compute the mean value of the distribution.
**Parameters**
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(probs)
Compute the mode value of the distribution.
**Parameters**
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, probs)
The probability of the given value. For the discrete distribution, it is the probability mass function(pmf).
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, probs)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(probs)
The standard deviation.
**Parameters**
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, probs)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(probs)
Compute the variance of the distribution.
**Parameters**
- **probs** (Tensor) - the probability of success. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,186 @@
.. py:method:: mean
:property:
Return the mean of the distribution.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: sd
:property:
Return the standard deviation of the distribution.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: cdf(value, mean, sd)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, mean_b, sd_b, mean, sd)
Compute the cross entropy of two distribution
**Parameters**
- **dist** (str) - the type of the other distribution.
- **mean_b** (Tensor) - the mean of the other distribution.
- **sd_b** (Tensor) - the standard deviation of the other distribution.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(mean, sd)
Compute the value of the entropy.
**Parameters**
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, mean_b, sd_b, mean, sd)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **mean_b** (Tensor) - the mean of the other distribution.
- **sd_b** (Tensor) - the standard deviation of the other distribution.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, mean, sd)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, mean, sd)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, mean, sd)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mode(mean, sd)
Compute the mode value of the distribution.
**Parameters**
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, mean, sd)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, mean, sd)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the sample.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: survival_function(value, mean, sd)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(mean, sd)
Compute the variance of the distribution.
**Parameters**
- **mean** (Tensor) - the mean of the distribution. Default value: None.
- **sd** (Tensor) - the standard deviation of the distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,147 @@
.. py:method:: rate
:property:
Return rate parameter.
**Returns**
Tensor, the value of the rate.
.. py:method:: cdf(value, rate)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: log_cdf(value, rate)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, rate)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, rate)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(rate)
Compute the mean value of the distribution.
**Parameters**
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(rate)
Compute the mode value of the distribution.
**Parameters**
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, rate)
The probability of the given value. For the discrete distribution, it is the probability mass function(pmf).
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, rate)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the tensor.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(rate)
The standard deviation.
**Parameters**
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, rate)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(rate)
Compute the variance of the distribution.
**Parameters**
- **rate** (Tensor) - the value of the rate. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -0,0 +1,127 @@
.. py:method:: bijector
:property:
Return the bijector.
**Returns**
Bijector, the bijector.
.. py:method:: distribution
:property:
Return the distribution before transformation.
**Returns**
Distribution, the distribution before transformation.
.. py:method:: dtype
:property:
Return the data type of distribution.
**Returns**
mindspore.dtype, the data type of distribution.
.. py:method:: is_linear_transformation
:property:
Return whether the bijector is linear.
**Returns**
Bool, return True if the bijector is linear, otherwise return False.
.. py:method:: cdf(value)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: log_cdf(value)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean
Compute the mean value of the distribution.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: prob(value)
The probability of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the tensor.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: survival_function(value)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
**Returns**
Tensor, the value of the survival function.

View File

@ -0,0 +1,212 @@
.. py:method:: high
:property:
Return the upper bound of the distribution.
**Returns**
Tensor, the upper bound of the distribution.
.. py:method:: low
:property:
Return the upper bound of the distribution.
**Returns**
Tensor, the lower bound of the distribution.
.. py:method:: cdf(value, high, low)
Compute the cumulatuve distribution function(CDF) of the given value.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the cumulatuve distribution function for the given input.
.. py:method:: cross_entropy(dist, high_b, low_b, high, low)
Compute the cross entropy of two distribution.
**Parameters**
- **dist** (str) - the type of the other distribution.
- **high_b** (Tensor) - the upper bound of the other distribution.
- **low_b** (Tensor) - the lower bound of the other distribution.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the cross entropy.
.. py:method:: entropy(high, low)
Compute the value of the entropy.
**Parameters**
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the entropy.
.. py:method:: kl_loss(dist, high_b, low_b, high, low)
Compute the value of the K-L loss between two distribution, namely KL(a||b).
**Parameters**
- **dist** (str) - the type of the other distribution.
- **high_b** (Tensor) - the upper bound of the other distribution.
- **low_b** (Tensor) - the lower bound of the other distribution.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: log_cdf(value, high, low)
Compute the log value of the cumulatuve distribution function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the log value of the cumulatuve distribution function.
.. py:method:: log_prob(value, high, low)
the log value of the probability.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the log value of the probability.
.. py:method:: log_survival(value, high, low)
Compute the log value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the K-L loss.
.. py:method:: mean(high, low)
Compute the mean value of the distribution.
**Parameters**
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the mean of the distribution.
.. py:method:: mode(high, low)
Compute the mode value of the distribution.
**Parameters**
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the mode of the distribution.
.. py:method:: prob(value, high, low)
The probability of the given value. For the continuous distribution, it is the probability density function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the probability.
.. py:method:: sample(shape, high, low)
Generate samples.
**Parameters**
- **shape** (tuple) - the shape of the tensor.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the sample following the distribution.
.. py:method:: sd(high, low)
The standard deviation.
**Parameters**
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the standard deviation of the distribution.
.. py:method:: survival_function(value, high, low)
Compute the value of the survival function.
**Parameters**
- **value** (Tensor) - the value to compute.
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the value of the survival function.
.. py:method:: var(high, low)
Compute the variance of the distribution.
**Parameters**
- **high** (Tensor) - the upper bound of the distribution. Default value: None.
- **low** (Tensor) - the lower bound of the distribution. Default value: None.
**Returns**
Tensor, the variance of the distribution.

View File

@ -628,7 +628,7 @@ class VocabEmbedding(Cell):
is specified. Default: 'normal'.
Inputs:
**input_ids** (Tensor) - The tokenized inputs with datatype int32 with shape (batch_size, seq_length)
- **input_ids** (Tensor) - The tokenized inputs with datatype int32 with shape (batch_size, seq_length)
Outputs:
Tuple, a tuple contains (`output`, `embedding_table`)