!48206 fix_ops_any_all_master
Merge pull request !48206 from yide12/tensor_isneginf_master
This commit is contained in:
commit
5acace7f6a
|
@ -297,8 +297,10 @@ Reduction函数
|
|||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.all
|
||||
mindspore.ops.amax
|
||||
mindspore.ops.amin
|
||||
mindspore.ops.any
|
||||
mindspore.ops.argmax
|
||||
mindspore.ops.argmin
|
||||
mindspore.ops.cummax
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
mindspore.ops.all
|
||||
=================
|
||||
|
||||
.. py:function:: mindspore.ops.all(x, axis=(), keep_dims=False)
|
||||
|
||||
默认情况下,通过对维度中所有元素进行“逻辑与”来减少 `x` 的维度。也可以沿轴减少 `x` 的维度。通过控制 `keep_dim` 来确定输出和输入的维度是否相同。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor[bool]) - 输入Tensor,其数据类型为bool型。shape是 :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)], 可选) - 要减少的维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。默认值:(),缩小所有维度。
|
||||
- **keep_dims** (bool, 可选) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型是bool。
|
||||
|
||||
- 如果 `axis` 为(),且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素进行“逻辑与”。
|
||||
- 如果 `axis` 为int,取值为2,并且 `keep_dims` 为False,则输出的shape为 :math:`(x_1, x_3, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(2, 3),并且 `keep_dims` 为False,则输出Tensor的shape为 :math:`(x_1, x_4, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `keep_dims` 不是bool类型。
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:int、tuple或list。
|
|
@ -0,0 +1,23 @@
|
|||
mindspore.ops.any
|
||||
=================
|
||||
|
||||
.. py:function:: mindspore.ops.any(x, axis=(), keep_dims=False)
|
||||
|
||||
默认情况下,通过对维度中所有元素进行“逻辑或”来减少 `x` 的维度。也可以沿轴减少 `x` 的维度。通过控制 `keep_dim` 来确定输出和输入的维度是否相同。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor[bool]) - 输入Tensor,其数据类型为bool型。shape是 :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。秩应小于8。
|
||||
- **axis** (Union[int, tuple(int), list(int)], 可选) - 要减少的维度。只允许常量值。假设 `x` 的秩为r,取值范围[-r,r)。默认值:(),缩小所有维度。
|
||||
- **keep_dims** (bool, 可选) - 如果为True,则保留缩小的维度,大小为1。否则移除维度。默认值:False。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型是bool。
|
||||
|
||||
- 如果 `axis` 为(),且 `keep_dims` 为False,则输出一个零维Tensor,表示输入Tensor中所有元素进行“逻辑或”。
|
||||
- 如果 `axis` 为int,取值为2,并且 `keep_dims` 为False,则输出的shape为 :math:`(x_1, x_3, ..., x_R)` 。
|
||||
- 如果 `axis` 为tuple(int)或list(int),取值为(2, 3),并且 `keep_dims` 为False,则输出Tensor的shape为 :math:`(x_1, x_4, ..., x_R)` 。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `keep_dims` 不是bool类型。
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
- **TypeError** - `axis` 不是以下数据类型之一:int、tuple或list。
|
|
@ -297,8 +297,10 @@ Reduction Functions
|
|||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.all
|
||||
mindspore.ops.amax
|
||||
mindspore.ops.amin
|
||||
mindspore.ops.any
|
||||
mindspore.ops.argmax
|
||||
mindspore.ops.argmin
|
||||
mindspore.ops.cummax
|
||||
|
|
|
@ -7674,8 +7674,7 @@ def _check_matmul_shapes(shape1, shape2, prim_name=None):
|
|||
r_shape2 = shape2[:-2]
|
||||
max_len = max(len(r_shape1), len(r_shape2))
|
||||
for i in range(max_len):
|
||||
items = [it[i - max_len + len(it)] if i - max_len +
|
||||
len(it) >= 0 else 1 for it in (r_shape1, r_shape2)]
|
||||
items = [it[i - max_len + len(it)] if i - max_len + len(it) >= 0 else 1 for it in (r_shape1, r_shape2)]
|
||||
max_size = max(items)
|
||||
shape_out.append(max_size)
|
||||
return tuple(shape_out)
|
||||
|
@ -8470,23 +8469,24 @@ def kron(x, y):
|
|||
|
||||
def all(x, axis=(), keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by the "logicalAND" of all elements in the dimension, by default. And also can
|
||||
Reduces a dimension of `x` by the "logicalAND" of all elements in the dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
controlling `keep_dims`.
|
||||
|
||||
Args:
|
||||
x (Tensor[bool]): The input tensor. The dtype of the tensor to be reduced is bool.
|
||||
x (Tensor[bool]): The input Tensor. The dtype of the Tensor is bool.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed. Must be in the range [-rank(x), rank(x)).
|
||||
keep_dims (bool): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default : False.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce.
|
||||
Only constant value is allowed. Supposed the rank of `x` is r,
|
||||
axis must be in the range [-rank(x), rank(x)). Default: (), all dimensions are reduced.
|
||||
keep_dims (bool, optional): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default : False.
|
||||
|
||||
Returns:
|
||||
Tensor, the dtype is bool.
|
||||
|
||||
- If axis is (), and keep_dims is False,
|
||||
the output is a 0-D tensor representing the "logical and" of all elements in the input tensor.
|
||||
the output is a 0-D Tensor representing the "logical and" of all elements in the input Tensor.
|
||||
- If axis is int, set as 2, and keep_dims is False,
|
||||
the shape of output is :math:`(x_1, x_3, ..., x_R)`.
|
||||
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
|
||||
|
@ -8523,23 +8523,24 @@ def all(x, axis=(), keep_dims=False):
|
|||
|
||||
def any(x, axis=(), keep_dims=False):
|
||||
r"""
|
||||
Reduces a dimension of a tensor by the "logical OR" of all elements in the dimension, by default. And also can
|
||||
Reduces a dimension of `x` by the "logical OR" of all elements in the dimension, by default. And also can
|
||||
reduce a dimension of `x` along the axis. Determine whether the dimensions of the output and input are the same by
|
||||
controlling `keep_dims`.
|
||||
|
||||
Args:
|
||||
x (Tensor[bool]): The input tensor. The dtype of the tensor to be reduced is bool.
|
||||
x (Tensor[bool]): The input Tensor. The dtype of the Tensor is bool.
|
||||
:math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
|
||||
axis (Union[int, tuple(int), list(int)]): The dimensions to reduce. Default: (), reduce all dimensions.
|
||||
Only constant value is allowed. Must be in the range [-rank(x), rank(x)).
|
||||
keep_dims (bool): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default : False.
|
||||
axis (Union[int, tuple(int), list(int)], optional): The dimensions to reduce.
|
||||
Only constant value is allowed. Supposed the rank of `x` is r,
|
||||
axis must be in the range [-rank(x), rank(x)). Default: (), all dimensions are reduced.
|
||||
keep_dims (bool, optional): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default : False.
|
||||
|
||||
Returns:
|
||||
Tensor, the dtype is bool.
|
||||
|
||||
- If axis is (), and keep_dims is False,
|
||||
the output is a 0-D tensor representing the "logical or" of all elements in the input tensor.
|
||||
the output is a 0-D Tensor representing the "logical or" of all elements in the input Tensor.
|
||||
- If axis is int, set as 2, and keep_dims is False,
|
||||
the shape of output is :math:`(x_1, x_3, ..., x_R)`.
|
||||
- If axis is tuple(int), set as (2, 3), and keep_dims is False,
|
||||
|
|
|
@ -4897,12 +4897,12 @@ def pixel_shuffle(x, upscale_factor):
|
|||
"by `upscale_factor` squared.")
|
||||
c = c // upscale_factor ** 2
|
||||
input_perm = (pre + (c, upscale_factor, upscale_factor, h, w))
|
||||
reshape = ops.Reshape()
|
||||
reshape = _get_cache_prim(P.Reshape)()
|
||||
transpose = _get_cache_prim(P.Transpose)()
|
||||
x = reshape(x, input_perm)
|
||||
input_perm = [i for i in range(length - 2)]
|
||||
input_perm = input_perm + [length, length - 2, length + 1, length - 1]
|
||||
input_perm = tuple(input_perm)
|
||||
transpose = ops.Transpose()
|
||||
x = transpose(x, input_perm)
|
||||
x = reshape(x, (pre + (c, upscale_factor * h, upscale_factor * w)))
|
||||
return x
|
||||
|
@ -4953,12 +4953,12 @@ def pixel_unshuffle(x, downscale_factor):
|
|||
h = h // downscale_factor
|
||||
w = w // downscale_factor
|
||||
input_perm = (pre + (c, h, downscale_factor, w, downscale_factor))
|
||||
reshape = ops.Reshape()
|
||||
reshape = _get_cache_prim(P.Reshape)()
|
||||
transpose = _get_cache_prim(P.Transpose)()
|
||||
x = reshape(x, input_perm)
|
||||
input_perm = [i for i in range(length - 2)]
|
||||
input_perm = input_perm + [length - 1, length + 1, length - 2, length]
|
||||
input_perm = tuple(input_perm)
|
||||
transpose = ops.Transpose()
|
||||
x = transpose(x, input_perm)
|
||||
x = reshape(x, (pre + (c * downscale_factor * downscale_factor, h, w)))
|
||||
return x
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.all(x, axis=1, keep_dims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_all(mode):
|
||||
"""
|
||||
Feature: ops.all
|
||||
Description: Verify the result of all
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[True, True],
|
||||
[False, True],
|
||||
[True, False],
|
||||
[False, False]], ms.bool_)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = Tensor([[True],
|
||||
[False],
|
||||
[False],
|
||||
[False]], ms.bool_)
|
||||
assert all(output == expect_output)
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, ops
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def construct(self, x):
|
||||
return ops.any(x, axis=1, keep_dims=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
def test_ops_any(mode):
|
||||
"""
|
||||
Feature: ops.any
|
||||
Description: Verify the result of any
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = Tensor([[True, True],
|
||||
[False, True],
|
||||
[True, False],
|
||||
[False, False]], ms.bool_)
|
||||
net = Net()
|
||||
output = net(x)
|
||||
expect_output = Tensor([[True],
|
||||
[True],
|
||||
[True],
|
||||
[False]], ms.bool_)
|
||||
assert all(output == expect_output)
|
Loading…
Reference in New Issue