1. edsr network

This commit is contained in:
RiEnRiu 2021-09-03 01:51:41 +08:00
parent 90c7804d6b
commit 58c1588526
2 changed files with 61 additions and 22 deletions

View File

@ -38,7 +38,7 @@
增强的深度超分辨率网络(EDSR)是2017年提出的单图超分辨重建网络在NTIRE2017超分辨重建比赛中获取第一名。它通过删除传统剩余网络中不必要的模块BatchNorm扩大模型的大小同时应用了稳定训练的方法进行优化显著提升了性能。
[论文](https://arxiv.org/pdf/1707.02921.pdf)Lim B , Son S , Kim H , et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017.
论文: [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/pdf/1707.02921.pdf): Lim B , Son S , Kim H , et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017.
# 模型架构
@ -54,6 +54,44 @@ EDSR是由多个优化后的residual blocks串联而成相比原始版本的r
- 测试集349.53M共100组图像(无HR图)
- 数据格式PNG图片文件文件
- 注数据将在src/dataset.py中处理。
- 数据目录树:官网下载数据后,解压压缩包,训练和验证所需的数据目录结构如下:
```shell
├─DIV2K_train_HR
│ ├─0001.png
│ ├─...
│ └─0800.png
├─DIV2K_train_LR_bicubic
│ ├─X2
│ │ ├─0001x2.png
│ │ ├─...
│ │ └─0800x2.png
│ ├─X3
│ │ ├─0001x3.png
│ │ ├─...
│ │ └─0800x3.png
│ └─X4
│ ├─0001x4.png
│ ├─...
│ └─0800x4.png
├─DIV2K_valid_LR_bicubic
│ ├─0801.png
│ ├─...
│ └─0900.png
└─DIV2K_valid_LR_bicubic
├─X2
│ ├─0801x2.png
│ ├─...
│ └─0900x2.png
├─X3
│ ├─0801x3.png
│ ├─...
│ └─0900x3.png
└─X4
├─0801x4.png
├─...
└─0900x4.png
```
# 特性
@ -81,66 +119,66 @@ EDSR是由多个优化后的residual blocks串联而成相比原始版本的r
```python
# 运行训练示例(EDSR(x2) in the paper)
python train.py --batch_size 16 --scale 2 --config_path DIV2K_config.yaml > train.log 2>&1 &
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save .ckpt] > train.log 2>&1 &
# 运行训练示例(EDSR(x3) in the paper - from EDSR(x2))
python train.py --batch_size 16 --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
# 运行训练示例(EDSR(x4) in the paper - from EDSR(x2))
python train.py --batch_size 16 --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
```
- Ascend-910处理器环境运行8卡训练DIV2K
```python
# 运行分布式训练示例(EDSR(x2) in the paper)
bash scripts/run_train.sh rank_table.json --scale 2 --config_path DIV2K_config.yaml
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save .ckpt]
# 运行分布式训练示例(EDSR(x3) in the paper)
bash scripts/run_train.sh rank_table.json --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path]
# 运行分布式训练示例(EDSR(x4) in the paper)
bash scripts/run_train.sh rank_table.json --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path]
```
- Ascend-910处理器环境运行单卡评估DIV2K
```python
# 运行评估示例(EDSR(x2) in the paper)
python eval.py --scale 2 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
python eval.py --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
# 运行评估示例(EDSR(x3) in the paper)
python eval.py --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
python eval.py --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
# 运行评估示例(EDSR(x4) in the paper)
python eval.py --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
python eval.py --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
```
- Ascend-910处理器环境运行8卡评估DIV2K
```python
# 运行分布式评估示例(EDSR(x2) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 2 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path]
# 运行分布式评估示例(EDSR(x3) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x3 model path]
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path]
# 运行分布式评估示例(EDSR(x4) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x4 model path]
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path]
```
- Ascend-910处理器环境运行单卡评估benchmark
```python
# 运行评估示例(EDSR(x2) in the paper)
python eval.py --scale 2 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
python eval.py --config_path benchmark_config.yaml --scale 2 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
# 运行评估示例(EDSR(x3) in the paper)
python eval.py --scale 3 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
python eval.py --config_path benchmark_config.yaml --scale 3 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
# 运行评估示例(EDSR(x4) in the paper)
python eval.py --scale 4 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
python eval.py --config_path benchmark_config.yaml --scale 4 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
```
- Ascend-910处理器环境运行8卡评估benchmark
```python
# 运行分布式评估示例(EDSR(x2) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 2 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 2 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path]
# 运行分布式评估示例(EDSR(x3) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 3 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x3 model path]
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 3 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path]
# 运行分布式评估示例(EDSR(x4) in the paper)
bash scripts/run_eval.sh rank_table.json --scale 4 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x4 model path]
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 4 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path]
```
- Ascend-310处理器环境运行单卡评估DIV2K

View File

@ -47,8 +47,8 @@ class FolderImagePair:
self.reader = reader
self.pair_keys, self.image_pairs = self.scan_pair(self.dir_patterns)
@classmethod
def scan_pair(cls, dir_patterns):
@staticmethod
def scan_pair(dir_patterns):
"""
scan pair
"""
@ -105,7 +105,8 @@ class LrHrImages(FolderImagePair):
def __getitem__(self, idx):
_, *images = super(LrHrImages, self).__getitem__(idx)
return images
return tuple(images)
class _BasePatchCutter:
"""