add the readme
This commit is contained in:
parent
f523a0f83c
commit
563eaad9a8
|
@ -0,0 +1,118 @@
|
||||||
|
# ResNet-50-THOR Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
This is an example of training ResNet-50 V1.5 with ImageNet2012 dataset by second-order optimizer THOR. THOR is a novel approximate seond-order optimization method in MindSpore. With fewer iterations, THOR can finish ResNet-50 V1.5 training in 72 minutes to top-1 accuracy of 75.9% using 8 Ascend 910, which is much faster than SGD with Momentum.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
- Download the dataset ImageNet2012
|
||||||
|
|
||||||
|
> Unzip the ImageNet2012 dataset to any path you want and the folder structure should include train and eval dataset as follows:
|
||||||
|
> ```
|
||||||
|
> .
|
||||||
|
> ├── ilsvrc # train dataset
|
||||||
|
> └── ilsvrc_eval # infer dataset
|
||||||
|
> ```
|
||||||
|
|
||||||
|
|
||||||
|
## Example structure
|
||||||
|
|
||||||
|
```shell
|
||||||
|
.
|
||||||
|
├── crossentropy.py # CrossEntropy loss function
|
||||||
|
├── config.py # parameter configuration
|
||||||
|
├── dataset_imagenet.py # data preprocessing
|
||||||
|
├── eval.py # infer script
|
||||||
|
├── model # include model file of the optimizer
|
||||||
|
├── run_distribute_train.sh # launch distributed training(8 pcs)
|
||||||
|
├── run_infer.sh # launch infering
|
||||||
|
└── train.py # train script
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Parameter configuration
|
||||||
|
|
||||||
|
Parameters for both training and inference can be set in config.py.
|
||||||
|
|
||||||
|
```
|
||||||
|
"class_num": 1000, # dataset class number
|
||||||
|
"batch_size": 32, # batch size of input tensor
|
||||||
|
"loss_scale": 128, # loss scale
|
||||||
|
"momentum": 0.9, # momentum of THOR optimizer
|
||||||
|
"weight_decay": 5e-4, # weight decay
|
||||||
|
"epoch_size": 45, # only valid for taining, which is always 1 for inference
|
||||||
|
"buffer_size": 1000, # number of queue size in data preprocessing
|
||||||
|
"image_height": 224, # image height
|
||||||
|
"image_width": 224, # image width
|
||||||
|
"save_checkpoint": True, # whether save checkpoint or not
|
||||||
|
"save_checkpoint_steps": 5004, # the step interval between two checkpoints. By default, the checkpoint will be saved every epoch
|
||||||
|
"keep_checkpoint_max": 20, # only keep the last keep_checkpoint_max checkpoint
|
||||||
|
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
|
||||||
|
"label_smooth": True, # label smooth
|
||||||
|
"label_smooth_factor": 0.1, # label smooth factor
|
||||||
|
"frequency": 834, # the step interval to update second-order information matrix
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
### Train
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# distributed training
|
||||||
|
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [DEVICE_NUM]
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# distributed training example(8 pcs)
|
||||||
|
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
|
||||||
|
```
|
||||||
|
|
||||||
|
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Training result will be stored in the example path, whose folder name begins with "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
|
||||||
|
|
||||||
|
```
|
||||||
|
# distribute training result(8 pcs)
|
||||||
|
epoch: 1 step: 5004, loss is 4.4182425
|
||||||
|
epoch: 2 step: 5004, loss is 3.740064
|
||||||
|
epoch: 3 step: 5004, loss is 4.0546017
|
||||||
|
epoch: 4 step: 5004, loss is 3.7598825
|
||||||
|
epoch: 5 step: 5004, loss is 3.3744206
|
||||||
|
......
|
||||||
|
```
|
||||||
|
|
||||||
|
### Infer
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
```
|
||||||
|
# infer
|
||||||
|
Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# infer with checkpoint
|
||||||
|
sh run_infer.sh dataset/ilsvrc_eval train_parallel0/resnet-42_5004.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
> checkpoint can be produced in training process.
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Inference result will be stored in the example path, whose folder name is "infer". Under this, you can find result like the followings in log.
|
||||||
|
|
||||||
|
```
|
||||||
|
result: {'acc': 0.759503041} ckpt=train_parallel0/resnet-42_5004.ckpt
|
||||||
|
```
|
Loading…
Reference in New Issue