!35287 Add tensor&functional interface for TensorScatterMax ops.

Merge pull request !35287 from wuweikang/tensor-scatter-max
This commit is contained in:
i-robot 2022-07-04 03:11:11 +00:00 committed by Gitee
commit 55da1a87d5
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
16 changed files with 201 additions and 47 deletions

View File

@ -356,8 +356,9 @@ Array操作
mindspore.ops.space_to_batch_nd
mindspore.ops.split
mindspore.ops.tensor_scatter_add
mindspore.ops.tensor_scatter_min
mindspore.ops.tensor_scatter_div
mindspore.ops.tensor_scatter_max
mindspore.ops.tensor_scatter_min
mindspore.ops.tensor_scatter_mul
mindspore.ops.tensor_scatter_sub
mindspore.ops.tensor_scatter_elements

View File

@ -1392,6 +1392,29 @@ mindspore.Tensor
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - Tensor的shape长度小于 `indices` 的shape的最后一个维度。
.. py:method:: scatter_max(indices, updates)
根据指定的更新值和输入索引通过最大值运算输出结果以Tensor形式返回。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于 `input_x[indices]` 的shape。有关更多详细信息请参见下方样例。
.. note::
如果 `indices` 的某些值超出范围,则不会更新相应的 `updates`,同时也不会抛出索引错误。
**参数:**
- **indices** (Tensor) - Tensor的索引数据类型为int32或int64的。其rank必须至少为2。
- **updates** (Tensor) - 指定与本Tensor相减操作的Tensor其数据类型与该Tensor相同。updates.shape应等于indices.shape[:-1] + self.shape[indices.shape[-1]:]。
**返回:**
Tensorshape和数据类型与原Tensor相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - Tensor的shape长度小于 `indices` 的shape的最后一个维度。
.. py:method:: scatter_mul(indices, updates)
根据指定的索引通过乘法进行计算将输出赋值到输出Tensor中。

View File

@ -3,24 +3,5 @@
.. py:class:: mindspore.ops.TensorScatterMax
根据指定的更新值和输入索引通过最大值运算更新输入Tensor的值。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于input_x[indices]的shape。有关更多详细信息请参见使用用例。
.. note::
如果 `indices` 的某些值超出范围,则相应的 `updates` 不会更新为 `input_x` ,而不是抛出索引错误。
**输入:**
- **input_x** (Tensor) - 输入Tensor。 `input_x` 的维度必须不小于indices.shape[-1]。
- **indices** (Tensor) - 输入Tensor的索引数据类型为int32或int64的。其rank必须至少为2。
- **updates** (Tensor) - 指定与 `input_x` 取最大值操作的Tensor其数据类型与输入相同。updates.shape应等于indices.shape[:-1] + input_x.shape[indices.shape[-1]:]。
**输出:**
Tensorshape和数据类型与输入 `input_x` 相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - `input_x` 的shape长度小于 `indices` 的shape的最后一个维度。
根据指定的更新值和输入索引通过最大值运算将结果赋值到输出Tensor中。
更多参考详见 func:`mindspore.ops.tensor_scatter_min`

View File

@ -0,0 +1,26 @@
maxdspore.ops.tensor_scatter_max
================================
.. py:function:: maxdspore.ops.tensor_scatter_max(input_x, indices, updates)
根据指定的更新值和输入索引通过最大值运算输出结果以Tensor形式返回。
索引的最后一个轴是每个索引向量的深度。对于每个索引向量, `updates` 中必须有相应的值。 `updates` 的shape应该等于 `input_x[indices]` 的shape。有关更多详细信息请参见下方样例。
.. note::
如果 `indices` 的某些值超出范围,则 `input_x` 不会更新相应的 `updates`,同时也不会抛出索引错误。
**参数:**
- **input_x** (Tensor) - 输入Tensor。 `input_x` 的维度必须不小于indices.shape[-1]。
- **indices** (Tensor) - 输入Tensor的索引数据类型为int32或int64。其rank必须至少为2。
- **updates** (Tensor) - 指定与 `input_x` 取最小值操作的Tensor其数据类型与输入相同。updates.shape应该等于indices.shape[:-1] + input_x.shape[indices.shape[-1]:]。
**返回:**
Tensorshape和数据类型与输入 `input_x` 相同。
**异常:**
- **TypeError** - `indices` 的数据类型既不是int32也不是int64。
- **ValueError** - `input_x` 的shape长度小于 `indices` 的shape的最后一个维度。

View File

@ -355,6 +355,7 @@ Array Operation
mindspore.ops.split
mindspore.ops.tensor_scatter_add
mindspore.ops.tensor_scatter_min
mindspore.ops.tensor_scatter_max
mindspore.ops.tensor_scatter_div
mindspore.ops.tensor_scatter_mul
mindspore.ops.tensor_scatter_sub

View File

@ -235,6 +235,7 @@ BuiltInTypeMap &GetMethodMap() {
{"scatter_mul", std::string("tensor_scatter_mul")}, // tensor_scatter_mul()
{"scatter_sub", std::string("tensor_scatter_sub")}, // P.TensorScatterSub()
{"scatter_min", std::string("tensor_scatter_min")}, // P.TensorScatterMin()
{"scatter_max", std::string("tensor_scatter_max")}, // P.TensorScatterMax()
{"scatter_div", std::string("tensor_scatter_div")}, // P.TensorScatterDiv()
{"norm", std::string("norm")}, // norm()
{"unsorted_segment_min", std::string("unsorted_segment_min")}, // P.UnsortedSegmentMin()

View File

@ -107,5 +107,21 @@ const BaseRef TensorScatterMinFission::DefinePattern() const {
VarPtr updates = std::make_shared<Var>();
return VectorRef({prim::kPrimTensorScatterMin, input, indices, updates});
}
const AnfNodePtr TensorScatterMinFission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
auto scatter_nd_node = TensorScatterFission::Process(graph, node, nullptr);
MS_EXCEPTION_IF_NULL(scatter_nd_node);
common::AnfAlgo::SetNodeAttr("cust_aicpu", MakeValue<std::string>("ScatterNdMin"), scatter_nd_node);
return scatter_nd_node;
}
const AnfNodePtr TensorScatterMaxFission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
auto scatter_nd_node = TensorScatterFission::Process(graph, node, nullptr);
MS_EXCEPTION_IF_NULL(scatter_nd_node);
common::AnfAlgo::SetNodeAttr("cust_aicpu", MakeValue<std::string>("ScatterNdMax"), scatter_nd_node);
return scatter_nd_node;
}
} // namespace opt
} // namespace mindspore

View File

@ -74,6 +74,7 @@ class TensorScatterMaxFission : public TensorScatterFission {
: TensorScatterFission(multigraph, name) {}
~TensorScatterMaxFission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const override;
protected:
ValueNodePtr GetScatterNdPrimNode() const override;
@ -85,6 +86,7 @@ class TensorScatterMinFission : public TensorScatterFission {
: TensorScatterFission(multigraph, name) {}
~TensorScatterMinFission() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, const EquivPtr &) const override;
protected:
ValueNodePtr GetScatterNdPrimNode() const override;

View File

@ -1841,6 +1841,14 @@ def tensor_sactter_div(input_x, indices, updates):
return F.tensor_scatter_div(input_x, indices, updates)
def tensor_scatter_max(x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
the value at the index will eventually be equal to the largest one to create a new tensor.
"""
return F.tensor_scatter_max(x, indices, updates)
def tensor_scatter_min(x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,

View File

@ -2449,6 +2449,57 @@ class Tensor(Tensor_):
self._init_check()
return tensor_operator_registry.get('tensor_scatter_min')()(self, indices, updates)
def scatter_max(self, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
the value at the index will eventually be equal to the largest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of `input_x[indices]`. For more details, see case below.
Note:
If some values of the `indices` are out of bound, instead of raising an index error,
the corresponding `updates` will not be updated to `input_x`.
Args:
indices (Tensor): The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
updates (Tensor): The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Returns:
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> # Next, demonstrate the approximate operation process of this operator:
>>> # 1, indices[0] = [0, 0], indices[1] = [0, 0]
>>> # 2, And input_x[0, 0] = -0.1
>>> # 3, So input_x[indices] = [-0.1, -0.1]
>>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2)
>>> op = ops.TensorScatterMax()
>>> # 5, Perform the max operation for the first time:
>>> # first_input_x = Max(input_x[0][0], updates[0]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> # 6, Perform the max operation for the second time:
>>> # second_input_x = Max(input_x[0][0], updates[0]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> output = op(input_x, indices, updates)
>>> print(output)
[[ 2.2 0.3 3.6]
[ 0.4 0.5 -3.2]]
"""
self._init_check()
return tensor_operator_registry.get('tensor_scatter_max')()(self, indices, updates)
def fill(self, value):
"""
Fill the tensor with a scalar value.

View File

@ -598,6 +598,7 @@ def get_slice_grad_vmap_rule(prim, axis_size):
@vmap_rules_getters.register(P.TensorScatterSub)
@vmap_rules_getters.register(P.TensorScatterMul)
@vmap_rules_getters.register(P.TensorScatterDiv)
@vmap_rules_getters.register(P.TensorScatterMax)
def get_tensor_scatter_op_vmap_rule(prim, axis_size):
"""
VmapRule for `TensorScatter*` operations, such as `TensorScatterMul`.
@ -608,6 +609,7 @@ def get_tensor_scatter_op_vmap_rule(prim, axis_size):
"TensorScatterSub": P.TensorScatterSub,
"TensorScatterMul": P.TensorScatterMul,
"TensorScatterDiv": P.TensorScatterDiv,
"TensorScatterMax": P.TensorScatterMax,
}
if isinstance(prim, str):
prim_name = prim

View File

@ -72,6 +72,7 @@ from .array_func import (
tensor_scatter_mul,
unique_consecutive,
tensor_scatter_div,
tensor_scatter_max,
tensor_scatter_min,
tensor_scatter_elements,
scatter_add,

View File

@ -67,6 +67,7 @@ tensor_scatter_sub_ = P.TensorScatterSub()
tensor_scatter_mul_ = P.TensorScatterMul()
tensor_scatter_div_ = P.TensorScatterDiv()
tensor_scatter_min_ = P.TensorScatterMin()
tensor_scatter_max_ = P.TensorScatterMax()
scalar_to_array_ = P.ScalarToArray()
scalar_to_tensor_ = P.ScalarToTensor()
tuple_to_array_ = P.TupleToArray()
@ -2282,6 +2283,60 @@ def tensor_scatter_sub(input_x, indices, updates):
return tensor_scatter_sub_(input_x, indices, updates)
def tensor_scatter_max(input_x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
the value at the index will eventually be equal to the largest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of input_x[indices].
For more details, see use cases.
Note:
If some values of the `indices` are out of bound, instead of raising an index error,
the corresponding `updates` will not be updated to `input_x`.
Args:
input_x (Tensor): The target tensor. The dimension of input_x must be no less than indices.shape[-1].
indices (Tensor): The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
updates (Tensor): The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Returns:
Tensor, has the same shape and type as `input_x`.
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Supported Platforms:
``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> indices = Tensor(np.array([[0, 0], [0, 0]]), mindspore.int32)
>>> updates = Tensor(np.array([1.0, 2.2]), mindspore.float32)
>>> # Next, demonstrate the approximate operation process of this operator:
>>> # 1, indices[0] = [0, 0], indices[1] = [0, 0]
>>> # 2, And input_x[0, 0] = -0.1
>>> # 3, So input_x[indices] = [-0.1, -0.1]
>>> # 4, Satisfy the above formula: input_x[indices].shape=(2) == updates.shape=(2)
>>> op = ops.TensorScatterMax()
>>> # 5, Perform the max operation for the first time:
>>> # first_input_x = Max(input_x[0][0], updates[0]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> # 6, Perform the max operation for the second time:
>>> # second_input_x = Max(input_x[0][0], updates[0]) = [[2.2, 0.3, 3.6], [0.4, 0.5, -3.2]]
>>> output = op(input_x, indices, updates)
>>> print(output)
[[ 2.2 0.3 3.6]
[ 0.4 0.5 -3.2]]
"""
return tensor_scatter_max_(input_x, indices, updates)
def tensor_scatter_min(input_x, indices, updates):
"""
By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`,
@ -3641,6 +3696,7 @@ __all__ = [
'tensor_scatter_sub',
'tensor_scatter_mul',
'tensor_scatter_div',
'tensor_scatter_max',
'tensor_scatter_min',
'tensor_scatter_elements',
'unsorted_segment_min',

View File

@ -65,7 +65,6 @@ if not security.enable_security():
print_ = P.Print()
squeeze = P.Squeeze()
tensor_scatter_update = P.TensorScatterUpdate()
tensor_scatter_max = P.TensorScatterMax()
scatter_nd_update = P.ScatterNdUpdate()
stack = P.Stack()
@ -1023,6 +1022,7 @@ tensor_operator_registry.register('tensor_scatter_update', tensor_scatter_update
tensor_operator_registry.register('tensor_scatter_mul', tensor_scatter_mul)
tensor_operator_registry.register('tensor_scatter_div', tensor_scatter_div)
tensor_operator_registry.register('tensor_scatter_min', P.TensorScatterMin)
tensor_operator_registry.register('tensor_scatter_max', P.TensorScatterMax)
tensor_operator_registry.register('tensor_scatter_sub', P.TensorScatterSub)
tensor_operator_registry.register('tensor_scatter_add', P.TensorScatterAdd)
tensor_operator_registry.register('bernoulli', bernoulli)

View File

@ -6665,34 +6665,13 @@ class TensorScatterUpdate(_TensorScatterOp):
class TensorScatterMax(_TensorScatterOp):
"""
By comparing the value at the position indicated by the index in input_x with the value in the update,
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
the value at the index will eventually be equal to the largest one to create a new tensor.
The last axis of the index is the depth of each index vector. For each index vector,
there must be a corresponding value in `updates`. The shape of `updates` should be
equal to the shape of input_x[indices].
For more details, see use cases.
Note:
If some values of the `indices` are out of bound, instead of raising an index error,
the corresponding `updates` will not be updated to `input_x`.
Inputs:
- **input_x** (Tensor) - The target tensor. The dimension of input_x must be no less than indices.shape[-1].
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
The rank must be at least 2.
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
and updates.shape should be equal to indices.shape[:-1] + input_x.shape[indices.shape[-1]:].
Outputs:
Tensor, has the same shape and type as `input_x`.
Raises:
TypeError: If dtype of `indices` is neither int32 nor int64.
ValueError: If length of shape of `input_x` is less than the last dimension of shape of `indices`.
Refer to :func:`mindspore.ops.tensor_scatter_max` for more detail.
Supported Platforms:
``GPU``
``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)

View File

@ -3536,6 +3536,12 @@ test_case_other_ops = [
Tensor(np.array([[0, 1], [1, 2]], np.int32)),
Tensor(np.ones([2, 5], np.float32) * 99)),
'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
('TensorScatterMax', {
'block': P.TensorScatterSub(),
'desc_inputs': (Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)), mstype.float32),
Tensor(np.array([[0, 1], [1, 2]], np.int32)),
Tensor(np.ones([2, 5], np.float32) * 99)),
'desc_bprop': [([3, 4, 5], {'dtype': np.float32})]}),
('ScatterMaxUseLocking', {
'block': ScatterMax(use_locking=True),
'desc_inputs': (Tensor(np.array([1, 0], np.int32)),