!3608 Add gpu support for RandomChoiceWithMask
Merge pull request !3608 from 34bunny/GPU-RandomChoiceWithMask
This commit is contained in:
commit
55d280e777
|
@ -0,0 +1,265 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh"
|
||||
#include <algorithm>
|
||||
|
||||
int RcwmRoundUpPower2(int v) {
|
||||
v--;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
v++;
|
||||
return v;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__inline__ __device__ void Swap(T *lhs, T *rhs) {
|
||||
T tmp = lhs[0];
|
||||
lhs[0] = rhs[0];
|
||||
rhs[0] = tmp;
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void InitArray(const int input_size, const int ceil_power2, const T *input, S *mask_buff, S *rank_buff) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < ceil_power2; pos += blockDim.x * gridDim.x) {
|
||||
mask_buff[pos] = (pos < input_size) ? static_cast<S>(input[pos]) : 0;
|
||||
rank_buff[pos] = (pos < input_size && input[pos] != false) ? pos : (ceil_power2 + 1);
|
||||
}
|
||||
}
|
||||
|
||||
template <size_t blockSize, typename T>
|
||||
__device__ void WarpReduce(volatile T *sdata, size_t tid) {
|
||||
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
|
||||
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
|
||||
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
|
||||
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
|
||||
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
|
||||
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
|
||||
}
|
||||
|
||||
template <size_t blockSize, typename T>
|
||||
__global__ void ReductionSum(T *g_idata, T *g_odata, size_t n) {
|
||||
__shared__ T sdata[blockSize];
|
||||
|
||||
size_t tid = threadIdx.x;
|
||||
size_t i = blockIdx.x * (blockSize) + tid;
|
||||
size_t gridSize = blockSize * gridDim.x;
|
||||
sdata[tid] = 0;
|
||||
|
||||
while (i < n) {
|
||||
sdata[tid] += g_idata[i];
|
||||
i += gridSize;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (blockSize >= 1024) {
|
||||
if (tid < 512) {
|
||||
sdata[tid] += sdata[tid + 512];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (blockSize >= 512) {
|
||||
if (tid < 256) {
|
||||
sdata[tid] += sdata[tid + 256];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (blockSize >= 256) {
|
||||
if (tid < 128) {
|
||||
sdata[tid] += sdata[tid + 128];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (blockSize >= 128) {
|
||||
if (tid < 64) {
|
||||
sdata[tid] += sdata[tid + 64];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (tid < 32) WarpReduce<blockSize>(sdata, tid);
|
||||
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void Reshape2Index(const int input_size, const int input_shape_size, const int d1, const int d2,
|
||||
const int d3, const int d4, const int d5, const T *input, S *output_index) {
|
||||
int pos_array[MAX_DIMENSION];
|
||||
int index_pos;
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < input_size; pos += blockDim.x * gridDim.x) {
|
||||
pos_array[0] = pos / (d2 * d3 * d4 * d5) % d1;
|
||||
pos_array[1] = pos / (d3 * d4 * d5) % d2;
|
||||
pos_array[2] = pos / (d4 * d5) % d3;
|
||||
pos_array[3] = pos / (d5) % d4;
|
||||
pos_array[4] = pos % d5;
|
||||
|
||||
index_pos = pos * input_shape_size;
|
||||
if (input[pos] == false) {
|
||||
for (int i = 0; i < input_shape_size; i++) {
|
||||
output_index[index_pos++] = 0;
|
||||
}
|
||||
} else {
|
||||
for (int i = MAX_DIMENSION - input_shape_size; i < MAX_DIMENSION; i++) {
|
||||
output_index[index_pos++] = pos_array[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void Copy(const T *src, T *dst, const int n) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < n; pos += blockDim.x * gridDim.x) {
|
||||
dst[pos] = src[pos];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void Sort(const int ceil_power2, T *rank_buff) {
|
||||
for (size_t i = 2; i <= ceil_power2; i <<= 1) {
|
||||
for (size_t j = (i >> 1); j > 0; j >>= 1) {
|
||||
for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < ceil_power2; tid += blockDim.x * gridDim.x) {
|
||||
size_t tid_comp = tid ^ j;
|
||||
if (tid_comp > tid) {
|
||||
if ((tid & i) == 0) {
|
||||
if (rank_buff[tid] > rank_buff[tid_comp]) {
|
||||
Swap(&rank_buff[tid], &rank_buff[tid_comp]);
|
||||
}
|
||||
} else {
|
||||
if (rank_buff[tid] < rank_buff[tid_comp]) {
|
||||
Swap(&rank_buff[tid], &rank_buff[tid_comp]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void SrandInit(const int ceil_power2, curandState *globalState, const int seedc) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < ceil_power2; i += blockDim.x * gridDim.x) {
|
||||
curand_init(seedc, i, 0, &globalState[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void Shuffle(const int ceil_power2, curandState *globalState, T *rank_buff) {
|
||||
int limit = ceil_power2 + 1;
|
||||
int value;
|
||||
for (size_t i = 2; i <= ceil_power2; i <<= 1) {
|
||||
for (size_t j = (i >> 1); j > 0; j >>= 1) {
|
||||
for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < ceil_power2; tid += blockDim.x * gridDim.x) {
|
||||
size_t tid_comp = tid ^ j;
|
||||
if (tid_comp > tid) {
|
||||
value = static_cast<int>(curand(&globalState[tid]));
|
||||
if (value & 1) {
|
||||
if (rank_buff[tid] != limit && rank_buff[tid_comp] != limit) {
|
||||
Swap(&rank_buff[tid], &rank_buff[tid_comp]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void MoveToOutput(const int input_shape_size, const int count, const T *input, S *output_index,
|
||||
T *output_mask, S *index_buff, S *rank_buff, S *Tnum_buff) {
|
||||
int Tnum = static_cast<int>(Tnum_buff[0]);
|
||||
int idx = 0;
|
||||
int pos;
|
||||
if (count <= Tnum) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < count; i += blockDim.x * gridDim.x) {
|
||||
idx = rank_buff[i];
|
||||
pos = i;
|
||||
output_mask[pos] = input[idx];
|
||||
pos *= input_shape_size;
|
||||
idx *= input_shape_size;
|
||||
for (size_t j = 0; j < input_shape_size; j++) {
|
||||
output_index[pos] = index_buff[idx];
|
||||
pos++;
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < count; i += blockDim.x * gridDim.x) {
|
||||
if (i < Tnum) {
|
||||
idx = rank_buff[i];
|
||||
pos = i;
|
||||
output_mask[pos] = input[idx];
|
||||
pos *= input_shape_size;
|
||||
idx *= input_shape_size;
|
||||
for (size_t j = 0; j < input_shape_size; j++) {
|
||||
output_index[pos] = index_buff[idx];
|
||||
pos++;
|
||||
idx++;
|
||||
}
|
||||
} else {
|
||||
pos = i;
|
||||
output_mask[pos] = static_cast<T>(0);
|
||||
pos *= input_shape_size;
|
||||
for (size_t j = 0; j < input_shape_size; j++) {
|
||||
output_index[pos] = static_cast<S>(0);
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalRandomChoiceWithMask(const int &input_size, const int &input_shape_size, const int &d1, const int &d2,
|
||||
const int &d3, const int &d4, const int &d5, const int &seedc, const int &count,
|
||||
const T *input, S *output_index, T *output_mask, S *index_buff, S *mask_buff, S *rank_buff,
|
||||
S *Tnum_buff, S *tmp_buff, curandState *globalState, cudaStream_t stream) {
|
||||
int ceil_power2 = RcwmRoundUpPower2(input_size);
|
||||
|
||||
InitArray<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, ceil_power2, input, mask_buff, rank_buff);
|
||||
|
||||
size_t BLOCKNUM;
|
||||
size_t n = ceil_power2;
|
||||
Copy<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(mask_buff, tmp_buff, ceil_power2);
|
||||
do {
|
||||
BLOCKNUM = std::ceil(static_cast<float>(n) / BLOCKSIZE);
|
||||
ReductionSum<BLOCKSIZE, S><<<BLOCKNUM, BLOCKSIZE, 0, stream>>>(tmp_buff, Tnum_buff, n);
|
||||
Copy<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(Tnum_buff, tmp_buff, BLOCKNUM);
|
||||
n = BLOCKNUM;
|
||||
} while (n > BLOCKSIZE);
|
||||
if (n > 1) ReductionSum<BLOCKSIZE, S><<<1, BLOCKSIZE, 0, stream>>>(Tnum_buff, Tnum_buff, n);
|
||||
|
||||
Reshape2Index<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, input_shape_size, d1, d2, d3, d4, d5,
|
||||
input, index_buff);
|
||||
|
||||
Sort<<<GET_BLOCKS(ceil_power2), GET_THREADS, 0, stream>>>(ceil_power2, rank_buff);
|
||||
|
||||
SrandInit<<<GET_BLOCKS(ceil_power2), GET_THREADS, 0, stream>>>(ceil_power2, globalState, seedc);
|
||||
Shuffle<<<GET_BLOCKS(ceil_power2), GET_THREADS, 0, stream>>>(ceil_power2, globalState, rank_buff);
|
||||
|
||||
MoveToOutput<<<GET_BLOCKS(count), GET_THREADS, 0, stream>>>(input_shape_size, count, input, output_index, output_mask,
|
||||
index_buff, rank_buff, Tnum_buff);
|
||||
}
|
||||
|
||||
template void CalRandomChoiceWithMask(const int &input_size, const int &input_shape_size, const int &d1, const int &d2,
|
||||
const int &d3, const int &d4, const int &d5, const int &seedc, const int &count,
|
||||
const bool *input, int *output_index, bool *output_mask, int *index_buff,
|
||||
int *mask_buff, int *rank_buff, int *Tnum_buff, int *tmp_buff,
|
||||
curandState *globalState, cudaStream_t stream);
|
|
@ -0,0 +1,34 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <curand_kernel.h>
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
#define BLOCKSIZE 256
|
||||
#define MAX_DIMENSION 5
|
||||
|
||||
template <typename T, typename S>
|
||||
void CalRandomChoiceWithMask(const int &input_size, const int &input_shape_size, const int &d1, const int &d2,
|
||||
const int &d3, const int &d4, const int &d5, const int &seedc, const int &count,
|
||||
const T *input, S *output_index, T *output_mask, S *index_buff, S *mask_buff, S *rank_buff,
|
||||
S *Tnum_buff, S *tmp_buff, curandState *globalState, cudaStream_t stream);
|
||||
|
||||
int RcwmRoundUpPower2(int v);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
|
|
@ -0,0 +1,26 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
RandomChoiceWithMask,
|
||||
KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
|
||||
RandomChoiceWithMaskGpuKernel, bool, int)
|
||||
}
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,129 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class RandomChoiceWithMaskGpuKernel : public GpuKernel {
|
||||
public:
|
||||
RandomChoiceWithMaskGpuKernel() : input_shape_size_(0), seedc_(0), input_size_(1), count_(0), ceil_power2_(0) {}
|
||||
~RandomChoiceWithMaskGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspaces,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
S *output_index = GetDeviceAddress<S>(outputs, 0);
|
||||
T *output_mask = GetDeviceAddress<T>(outputs, 1);
|
||||
S *index_buff = GetDeviceAddress<S>(workspaces, 0);
|
||||
S *mask_buff = GetDeviceAddress<S>(workspaces, 1);
|
||||
S *rank_buff = GetDeviceAddress<S>(workspaces, 2);
|
||||
S *Tnum_buff = GetDeviceAddress<S>(workspaces, 3);
|
||||
S *tmp_buff = GetDeviceAddress<S>(workspaces, 4);
|
||||
void *States = GetDeviceAddress<void *>(workspaces, 5);
|
||||
curandState *devStates = reinterpret_cast<curandState *>(States);
|
||||
CalRandomChoiceWithMask(input_size_, input_shape_size_, input_shape_5D_[0], input_shape_5D_[1], input_shape_5D_[2],
|
||||
input_shape_5D_[3], input_shape_5D_[4], seedc_, count_, input, output_index, output_mask,
|
||||
index_buff, mask_buff, rank_buff, Tnum_buff, tmp_buff, devStates,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but RandomChoiceWithMask needs 1 input.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 2) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but RandomChoiceWithMask has 2 outputs.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_shape_size_ = input_shape.size();
|
||||
if (input_shape_size_ < 1 || input_shape_size_ > MAX_DIMENSION) {
|
||||
MS_LOG(ERROR) << "Input is " << input_shape_size_
|
||||
<< "-D, but RandomChoiceWithMask supports only 1-D to 5-D inputs.";
|
||||
return false;
|
||||
}
|
||||
// convert size_t to int
|
||||
for (auto i = 0; i < input_shape_size_; i++) {
|
||||
input_shape_5D_.push_back(input_shape[i]);
|
||||
}
|
||||
// convert shape to 5D
|
||||
while (input_shape_5D_.size() != MAX_DIMENSION) {
|
||||
input_shape_5D_.insert(input_shape_5D_.begin(), 1);
|
||||
}
|
||||
// init seedc_
|
||||
int seed = GetAttr<int>(kernel_node, "seed");
|
||||
int seed2 = GetAttr<int>(kernel_node, "seed2");
|
||||
if (seed2 != 0)
|
||||
seedc_ = seed2;
|
||||
else if (seed != 0)
|
||||
seedc_ = seed;
|
||||
else
|
||||
seedc_ = time(NULL);
|
||||
// init memory
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
count_ = GetAttr<int>(kernel_node, "count");
|
||||
// upper ceiling for input for ceil_power2
|
||||
ceil_power2_ = RcwmRoundUpPower2(input_size_);
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(count_ * input_shape_size_ * sizeof(S));
|
||||
output_size_list_.push_back(count_ * sizeof(T));
|
||||
workspace_size_list_.push_back(input_size_ * input_shape_size_ * sizeof(S));
|
||||
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
|
||||
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
|
||||
int blocknum = std::ceil(static_cast<float>(ceil_power2_) / BLOCKSIZE);
|
||||
workspace_size_list_.push_back(blocknum * sizeof(S));
|
||||
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
|
||||
workspace_size_list_.push_back(ceil_power2_ * sizeof(curandState));
|
||||
}
|
||||
|
||||
private:
|
||||
int input_shape_size_;
|
||||
int seedc_;
|
||||
int input_size_;
|
||||
int count_;
|
||||
int ceil_power2_;
|
||||
std::vector<int> input_shape_5D_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
|
|
@ -348,13 +348,13 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
|
|||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor[bool]) - The input tensor.
|
||||
- **input_x** (Tensor[bool]) - The input tensor. The input tensor rank should be >= 1 and <= 5.
|
||||
|
||||
Outputs:
|
||||
Two tensors, the first one is the index tensor and the other one is the mask tensor.
|
||||
|
||||
- **index** (Tensor) - The output has shape between 2-D and 5-D.
|
||||
- **mask** (Tensor) - The output has shape 1-D.
|
||||
- **index** (Tensor) - The output shape is 2-D.
|
||||
- **mask** (Tensor) - The output shape is 1-D.
|
||||
|
||||
Examples:
|
||||
>>> rnd_choice_mask = P.RandomChoiceWithMask()
|
||||
|
@ -372,6 +372,7 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
|
|||
|
||||
def infer_shape(self, x_shape):
|
||||
validator.check_integer("input_x rank", len(x_shape), 1, Rel.GE, self.name)
|
||||
validator.check_integer("input_x rank", len(x_shape), 5, Rel.LE, self.name)
|
||||
return ([self.count, len(x_shape)], [self.count])
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
class RCWM_count_in(nn.Cell):
|
||||
def __init__(self):
|
||||
super(RCWM_count_in, self).__init__()
|
||||
self.RCWM_count_in = P.RandomChoiceWithMask(count=4, seed=1)
|
||||
|
||||
def construct(self, x):
|
||||
return self.RCWM_count_in(x)
|
||||
|
||||
class RCWM_count_out(nn.Cell):
|
||||
def __init__(self):
|
||||
super(RCWM_count_out, self).__init__()
|
||||
self.RCWM_count_out = P.RandomChoiceWithMask(count=10, seed=1)
|
||||
|
||||
def construct(self, x):
|
||||
return self.RCWM_count_out(x)
|
||||
|
||||
class RCWM_3D(nn.Cell):
|
||||
def __init__(self):
|
||||
super(RCWM_3D, self).__init__()
|
||||
self.RCWM_3D = P.RandomChoiceWithMask(count=10, seed=1)
|
||||
|
||||
def construct(self, x):
|
||||
return self.RCWM_3D(x)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_RCWM_3D():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
input_tensor = Tensor(np.ones([3, 4, 5]).astype(np.bool))
|
||||
expect1 = [[0, 1, 1], [0, 2, 1], [0, 2, 2], [1, 0, 1], [0, 1, 3], [0, 3, 0], [1, 3, 2], \
|
||||
[0, 0, 0], [1, 1, 2], [1, 3, 4]]
|
||||
expect2 = [True, True, True, True, True, True, True, True, True, True]
|
||||
rcwm = RCWM_3D()
|
||||
output1, output2 = rcwm(input_tensor)
|
||||
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
|
||||
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_RCWM_count_out():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
|
||||
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0], [0, 0], [3, 3], [2, 3], [1, 3], [0, 0], [0, 0]]
|
||||
expect2 = [True, True, True, True, True, True, True, True, False, False]
|
||||
rcwm = RCWM_count_out()
|
||||
output1, output2 = rcwm(input_tensor)
|
||||
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
|
||||
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_RCWM_count_in():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
|
||||
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0]]
|
||||
expect2 = [True, True, True, True]
|
||||
rcwm = RCWM_count_in()
|
||||
output1, output2 = rcwm(input_tensor)
|
||||
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
|
||||
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
|
Loading…
Reference in New Issue