Refactor ImageFolderNode and BatchNode into its separate files

fix ci

fix ci

address review cmmts, fix ci

remove dup code in datasets.cc
This commit is contained in:
Zirui Wu 2020-10-20 16:16:07 -04:00
parent 915fa0eb5f
commit 52eec881ec
19 changed files with 352 additions and 168 deletions

View File

@ -78,6 +78,8 @@ add_dependencies(callback core)
add_dependencies(text core)
add_dependencies(text-kernels core)
add_dependencies(cpp-API core)
add_dependencies(engine-ir-datasetops core)
add_dependencies(engine-ir-datasetops-source core)
if (ENABLE_PYTHON)
add_dependencies(APItoPython core)
endif()
@ -99,6 +101,8 @@ set(submodules
$<TARGET_OBJECTS:lite-cv>
$<TARGET_OBJECTS:kernels-data>
$<TARGET_OBJECTS:cpp-API>
$<TARGET_OBJECTS:engine-ir-datasetops>
$<TARGET_OBJECTS:engine-ir-datasetops-source>
$<TARGET_OBJECTS:kernels-soft-dvpp-image>
$<TARGET_OBJECTS:soft-dvpp-utils>
$<TARGET_OBJECTS:engine-datasetops-source>

View File

@ -61,6 +61,10 @@
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
// IR nodes
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/util/random.h"
@ -69,15 +73,6 @@ namespace mindspore {
namespace dataset {
namespace api {
#define RETURN_EMPTY_IF_ERROR(_s) \
do { \
Status __rc = (_s); \
if (__rc.IsError()) { \
MS_LOG(ERROR) << __rc; \
return {}; \
} \
} while (false)
// Function to create the iterator, which will build and launch the execution tree.
std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> columns) {
std::shared_ptr<Iterator> iter;
@ -1283,43 +1278,6 @@ std::vector<std::shared_ptr<DatasetOp>> CSVNode::Build() {
node_ops.push_back(csv_op);
return node_ops;
}
ImageFolderNode::ImageFolderNode(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler,
bool recursive, std::set<std::string> extensions,
std::map<std::string, int32_t> class_indexing)
: dataset_dir_(dataset_dir),
decode_(decode),
sampler_(sampler),
recursive_(recursive),
class_indexing_(class_indexing),
exts_(extensions) {}
Status ImageFolderNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("ImageFolderNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("ImageFolderNode", sampler_));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ImageFolderNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
// This arg is exist in ImageFolderOp, but not externalized (in Python API).
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_INT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<ImageFolderOp>(num_workers_, rows_per_buffer_, dataset_dir_, connector_que_size_,
recursive_, decode_, exts_, class_indexing_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
#ifndef ENABLE_ANDROID
ManifestNode::ManifestNode(const std::string &dataset_file, const std::string &usage,
const std::shared_ptr<SamplerObj> &sampler,
@ -1800,54 +1758,6 @@ std::vector<std::shared_ptr<DatasetOp>> VOCNode::Build() {
}
#endif
// DERIVED DATASET CLASSES LEAF-NODE DATASETS
// (In alphabetical order)
BatchNode::BatchNode(std::shared_ptr<Dataset> child, int32_t batch_size, bool drop_remainder, bool pad,
std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map)
: batch_size_(batch_size),
drop_remainder_(drop_remainder),
pad_(pad),
cols_to_map_(cols_to_map),
pad_map_(pad_map) {
this->children.push_back(child);
}
std::vector<std::shared_ptr<DatasetOp>> BatchNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
#ifdef ENABLE_PYTHON
py::function noop;
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, cols_to_map_, noop, noop, pad_map_));
#else
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, pad_map_));
#endif
// Until py::function is implemented for C++ API, there is no need for a project op to be inserted after batch
// because project is only needed when batch op performs per_batch_map. This per_batch_map is a pyfunc
return node_ops;
}
Status BatchNode::ValidateParams() {
if (batch_size_ <= 0) {
std::string err_msg = "BatchNode: batch_size should be positive integer, but got: " + std::to_string(batch_size_);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!cols_to_map_.empty()) {
std::string err_msg = "BatchNode: cols_to_map functionality is not implemented in C++; this should be left empty.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
#ifndef ENABLE_ANDROID
BucketBatchByLengthNode::BucketBatchByLengthNode(
std::shared_ptr<Dataset> child, const std::vector<std::string> &column_names,
@ -1884,7 +1794,7 @@ std::vector<std::shared_ptr<DatasetOp>> BucketBatchByLengthNode::Build() {
Status BucketBatchByLengthNode::ValidateParams() {
if (element_length_function_ == nullptr && column_names_.size() != 1) {
std::string err_msg = "BucketBatchByLengthNode: element_length_function not specified, but not one column name: " +
column_names_.size();
std::to_string(column_names_.size());
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}

View File

@ -1,8 +1,10 @@
add_subdirectory(datasetops)
add_subdirectory(opt)
add_subdirectory(gnn)
add_subdirectory(ir)
add_subdirectory(perf)
add_subdirectory(cache)
if (ENABLE_TDTQUE)
add_subdirectory(tdt)
endif ()

View File

@ -0,0 +1,3 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_subdirectory(datasetops)

View File

@ -0,0 +1,5 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_subdirectory(source)
add_library(engine-ir-datasetops OBJECT
batch_node.cc)

View File

@ -0,0 +1,76 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/engine/datasetops/batch_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
namespace api {
BatchNode::BatchNode(std::shared_ptr<Dataset> child, int32_t batch_size, bool drop_remainder, bool pad,
std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map)
: batch_size_(batch_size),
drop_remainder_(drop_remainder),
pad_(pad),
cols_to_map_(cols_to_map),
pad_map_(pad_map) {
this->children.push_back(child);
}
Status BatchNode::ValidateParams() {
if (batch_size_ <= 0) {
std::string err_msg = "Batch: batch_size should be positive integer, but got: " + std::to_string(batch_size_);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (!cols_to_map_.empty()) {
std::string err_msg = "cols_to_map functionality is not implemented in C++; this should be left empty.";
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> BatchNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
#ifdef ENABLE_PYTHON
py::function noop;
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, cols_to_map_, noop, noop, pad_map_));
#else
node_ops.push_back(std::make_shared<BatchOp>(batch_size_, drop_remainder_, pad_, connector_que_size_, num_workers_,
cols_to_map_, pad_map_));
#endif
// Until py::function is implemented for C++ API, there is no need for a project op to be inserted after batch
// because project is only needed when batch op performs per_batch_map. This per_batch_map is a pyfunc
return node_ops;
}
} // namespace api
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,61 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_BATCH_NODE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_BATCH_NODE_H_
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/include/datasets.h"
namespace mindspore {
namespace dataset {
namespace api {
class BatchNode : public Dataset {
public:
/// \brief Constructor
BatchNode(std::shared_ptr<Dataset> child, int32_t batch_size, bool drop_remainder, bool pad,
std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map);
/// \brief Destructor
~BatchNode() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return Status Status::OK() if all the parameters are valid
Status ValidateParams() override;
private:
int32_t batch_size_;
bool drop_remainder_;
bool pad_;
std::vector<std::string> cols_to_map_;
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map_;
};
} // namespace api
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_BATCH_NODE_H_

View File

@ -0,0 +1,4 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_library(engine-ir-datasetops-source OBJECT
image_folder_node.cc)

View File

@ -0,0 +1,70 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
namespace api {
ImageFolderNode::ImageFolderNode(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler,
bool recursive, std::set<std::string> extensions,
std::map<std::string, int32_t> class_indexing)
: dataset_dir_(dataset_dir),
decode_(decode),
sampler_(sampler),
recursive_(recursive),
class_indexing_(class_indexing),
exts_(extensions) {}
Status ImageFolderNode::ValidateParams() {
RETURN_IF_NOT_OK(ValidateDatasetDirParam("ImageFolderNode", dataset_dir_));
RETURN_IF_NOT_OK(ValidateDatasetSampler("ImageFolderNode", sampler_));
return Status::OK();
}
std::vector<std::shared_ptr<DatasetOp>> ImageFolderNode::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// Do internal Schema generation.
// This arg is exist in ImageFolderOp, but not externalized (in Python API).
std::unique_ptr<DataSchema> schema = std::make_unique<DataSchema>();
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_INT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<ImageFolderOp>(num_workers_, rows_per_buffer_, dataset_dir_, connector_que_size_,
recursive_, decode_, exts_, class_indexing_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
} // namespace api
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,63 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_IMAGE_FOLDER_NODE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_IMAGE_FOLDER_NODE_H_
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "minddata/dataset/include/datasets.h"
namespace mindspore {
namespace dataset {
namespace api {
/// \class ImageFolderNode
/// \brief A Dataset derived class to represent ImageFolder dataset
class ImageFolderNode : public Dataset {
public:
/// \brief Constructor
ImageFolderNode(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler, bool recursive,
std::set<std::string> extensions, std::map<std::string, int32_t> class_indexing);
/// \brief Destructor
~ImageFolderNode() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return Status Status::OK() if all the parameters are valid
Status ValidateParams() override;
private:
std::string dataset_dir_;
bool decode_;
bool recursive_;
std::shared_ptr<SamplerObj> sampler_;
std::map<std::string, int32_t> class_indexing_;
std::set<std::string> exts_;
};
} // namespace api
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_IMAGE_FOLDER_NODE_H_

View File

@ -22,6 +22,7 @@
#include <memory>
#include <set>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "minddata/dataset/core/constants.h"
@ -65,6 +66,7 @@ class CocoNode;
class CSVNode;
class CsvBase;
class ImageFolderNode;
class BatchNode;
#ifndef ENABLE_ANDROID
class ManifestNode;
class MindDataNode;
@ -77,7 +79,6 @@ class TFRecordNode;
class VOCNode;
#endif
// Dataset Op classes (in alphabetical order)
class BatchNode;
#ifndef ENABLE_ANDROID
class BucketBatchByLengthNode;
class BuildVocabNode;
@ -92,6 +93,30 @@ class SkipNode;
class TakeNode;
class ZipNode;
#define RETURN_EMPTY_IF_ERROR(_s) \
do { \
Status __rc = (_s); \
if (__rc.IsError()) { \
MS_LOG(ERROR) << __rc; \
return {}; \
} \
} while (false)
// Helper function to validate dataset num_shards and shard_id parameters
Status ValidateDatasetShardParams(const std::string &dataset_name, int32_t num_shards, int32_t shard_id);
// Helper function to validate dataset sampler parameter
Status ValidateDatasetSampler(const std::string &dataset_name, const std::shared_ptr<SamplerObj> &sampler);
Status ValidateStringValue(const std::string &str, const std::unordered_set<std::string> &valid_strings);
// Helper function to validate dataset input/output column parameterCD -
Status ValidateDatasetColumnParam(const std::string &dataset_name, const std::string &column_param,
const std::vector<std::string> &columns);
// Helper function to validate dataset directory parameter
Status ValidateDatasetDirParam(const std::string &dataset_name, std::string dataset_dir);
/// \brief Function to create a SchemaObj
/// \param[in] schema_file Path of schema file
/// \return Shared pointer to the current schema
@ -915,34 +940,6 @@ class CSVNode : public Dataset {
int32_t shard_id_;
};
/// \class ImageFolderNode
/// \brief A Dataset derived class to represent ImageFolder dataset
class ImageFolderNode : public Dataset {
public:
/// \brief Constructor
ImageFolderNode(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler, bool recursive,
std::set<std::string> extensions, std::map<std::string, int32_t> class_indexing);
/// \brief Destructor
~ImageFolderNode() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return Status Status::OK() if all the parameters are valid
Status ValidateParams() override;
private:
std::string dataset_dir_;
bool decode_;
bool recursive_;
std::shared_ptr<SamplerObj> sampler_;
std::map<std::string, int32_t> class_indexing_;
std::set<std::string> exts_;
};
#ifndef ENABLE_ANDROID
class ManifestNode : public Dataset {
public:
@ -1202,32 +1199,6 @@ class VOCNode : public Dataset {
// DERIVED DATASET CLASSES FOR DATASET OPS
// (In alphabetical order)
class BatchNode : public Dataset {
public:
/// \brief Constructor
BatchNode(std::shared_ptr<Dataset> child, int32_t batch_size, bool drop_remainder, bool pad,
std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map);
/// \brief Destructor
~BatchNode() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return Status Status::OK() if all the parameters are valid
Status ValidateParams() override;
private:
int32_t batch_size_;
bool drop_remainder_;
bool pad_;
std::vector<std::string> cols_to_map_;
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map_;
};
#ifndef ENABLE_ANDROID
class BucketBatchByLengthNode : public Dataset {
public:

View File

@ -16,6 +16,8 @@
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;

View File

@ -18,6 +18,8 @@
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/vision.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::Tensor;

View File

@ -19,12 +19,14 @@
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/core/global_context.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset;
using namespace mindspore::dataset::api;
using mindspore::dataset::Tensor;
using mindspore::dataset::ShuffleMode;
using mindspore::dataset::TensorShape;
using mindspore::dataset::DataType;
using mindspore::dataset::ShuffleMode;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
@ -355,11 +357,9 @@ TEST_F(MindDataTestPipeline, TestTFRecordDatasetShard) {
// Create a TFRecord Dataset
// Each file has two columns("image", "label") and 3 rows
std::vector<std::string> files = {
datasets_root_path_ + "/test_tf_file_3_images2/train-0000-of-0001.data",
std::vector<std::string> files = {datasets_root_path_ + "/test_tf_file_3_images2/train-0000-of-0001.data",
datasets_root_path_ + "/test_tf_file_3_images2/train-0000-of-0002.data",
datasets_root_path_ + "/test_tf_file_3_images2/train-0000-of-0003.data"
};
datasets_root_path_ + "/test_tf_file_3_images2/train-0000-of-0003.data"};
std::shared_ptr<Dataset> ds1 = TFRecord({files}, "", {}, 0, ShuffleMode::kFalse, 2, 1, true);
EXPECT_NE(ds1, nullptr);
std::shared_ptr<Dataset> ds2 = TFRecord({files}, "", {}, 0, ShuffleMode::kFalse, 2, 1, false);

View File

@ -16,6 +16,8 @@
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;

View File

@ -16,6 +16,9 @@
#include "common/common.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::Tensor;

View File

@ -18,6 +18,8 @@
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::BorderType;
using mindspore::dataset::Tensor;

View File

@ -18,6 +18,8 @@
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/vision.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset::api;
using mindspore::dataset::BorderType;
using mindspore::dataset::Tensor;

View File

@ -20,6 +20,8 @@
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/batch_node.h"
using namespace mindspore::dataset;
using mindspore::dataset::Tensor;