!40276 [MS][OPS]remove duplicate core file
Merge pull request !40276 from mengyuanli/remove_useless_file
This commit is contained in:
commit
523ba3fa5e
|
@ -17,7 +17,7 @@
|
|||
#include "plugin/device/cpu/kernel/relu_grad_v2_cpu_kernel.h"
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include "mindspore/core/ops/relu_grad_v2.h"
|
||||
#include "mindspore/core/ops/grad/relu_grad_v2.h"
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
|
@ -106,13 +106,14 @@ int ReluGradV2CpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const s
|
|||
return ret;
|
||||
}
|
||||
auto input_shape = inputs[kIndex0]->GetShapeVector();
|
||||
if (input_shape.size() != kDim4) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of input shape must be 4, but got " << input_shape.size();
|
||||
if (input_shape.size() < kDim4) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of input shape must be greater than 4, but got "
|
||||
<< input_shape.size();
|
||||
return KRET_RESIZE_FAILED;
|
||||
}
|
||||
auto mask_shape = inputs[kIndex1]->GetShapeVector();
|
||||
if (mask_shape.size() < kDim4) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of mask shape should greater than 4, but got "
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of mask shape should be greater than 4, but got "
|
||||
<< mask_shape.size();
|
||||
return KRET_RESIZE_FAILED;
|
||||
}
|
||||
|
|
|
@ -100,8 +100,9 @@ int ReLUV2CpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::
|
|||
return ret;
|
||||
}
|
||||
auto input_shape = inputs[kIndex0]->GetShapeVector();
|
||||
if (input_shape.size() != kDim4) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of input shape must be 4, but got " << input_shape.size();
|
||||
if (input_shape.size() < kDim4) {
|
||||
MS_LOG(ERROR) << "For '" << kernel_name_ << "', the dims of input shape must be greater than 4, but got "
|
||||
<< input_shape.size();
|
||||
return KRET_RESIZE_FAILED;
|
||||
}
|
||||
return KRET_OK;
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -28,38 +28,60 @@
|
|||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr ReLUGradV2InferShape(const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto x = input_args[0]->BuildShape();
|
||||
MS_EXCEPTION_IF_NULL(x);
|
||||
auto shape_element = x->cast<abstract::ShapePtr>();
|
||||
MS_EXCEPTION_IF_NULL(shape_element);
|
||||
return shape_element;
|
||||
}
|
||||
TypePtr ReLUGradV2InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto prim_name = prim->name();
|
||||
MS_EXCEPTION_IF_NULL(input_args[0]);
|
||||
auto x_type_map = input_args[0]->BuildType();
|
||||
MS_EXCEPTION_IF_NULL(x_type_map);
|
||||
auto x_type = x_type_map->cast<TensorTypePtr>();
|
||||
MS_EXCEPTION_IF_NULL(x_type);
|
||||
std::set<TypePtr> valid_x_type = {kTensorType};
|
||||
return CheckAndConvertUtils::CheckTensorTypeValid("input_x", x_type, valid_x_type, prim_name);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
MIND_API_OPERATOR_IMPL(ReLUGradV2, BaseOperator);
|
||||
AbstractBasePtr ReLUGradV2Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
constexpr const size_t kReluGradV2InputNum = 2;
|
||||
constexpr const size_t kGradientIndex = 0;
|
||||
constexpr const size_t kMaskIndex = 1;
|
||||
constexpr const size_t kReluGradV2GradientDims = 4;
|
||||
abstract::ShapePtr ReluGradV2InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
const int64_t input_num = 2;
|
||||
(void)CheckAndConvertUtils::CheckInteger("input numbers", SizeToLong(input_args.size()), kEqual, input_num,
|
||||
prim_name);
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
return abstract::MakeAbstract(ReLUGradV2InferShape(input_args), ReLUGradV2InferType(primitive, input_args));
|
||||
auto gradient_shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kGradientIndex]->BuildShape());
|
||||
auto gradient_input_shape = gradient_shape_map[kShape];
|
||||
if (gradient_input_shape.size() < kReluGradV2GradientDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << primitive->name()
|
||||
<< "', The dims of 'gradient' must be greater than 4,but got a " +
|
||||
std::to_string(gradient_input_shape.size()) + "-D tensor";
|
||||
}
|
||||
auto mask_shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kMaskIndex]->BuildShape());
|
||||
auto mask_input_shape = mask_shape_map[kShape];
|
||||
if (mask_input_shape.size() < kReluGradV2GradientDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << primitive->name()
|
||||
<< "', The 'mask' dims must be greater than 4,but got " +
|
||||
std::to_string(mask_input_shape.size()) + "-D tensor";
|
||||
}
|
||||
auto gradient_build_shape = input_args[kGradientIndex]->BuildShape();
|
||||
MS_EXCEPTION_IF_NULL(gradient_build_shape);
|
||||
auto gradient_shape = gradient_build_shape->cast<abstract::ShapePtr>();
|
||||
MS_EXCEPTION_IF_NULL(gradient_shape);
|
||||
return gradient_shape;
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(ReLUGradV2, prim::kPrimReluGradV2, ReLUGradV2Infer, nullptr, true);
|
||||
|
||||
TypePtr ReluGradV2InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto prim_name = prim->name();
|
||||
MS_EXCEPTION_IF_NULL(input_args[kGradientIndex]);
|
||||
auto gradient_type = input_args[kGradientIndex]->BuildType();
|
||||
MS_EXCEPTION_IF_NULL(gradient_type);
|
||||
if (!gradient_type->isa<TensorType>()) {
|
||||
MS_EXCEPTION(TypeError) << "The " << prim_name << "'s "
|
||||
<< " input must be tensor type but got " << gradient_type->ToString();
|
||||
}
|
||||
return gradient_type;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
MIND_API_OPERATOR_IMPL(ReluGradV2, BaseOperator);
|
||||
AbstractBasePtr ReluGradV2Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
(void)CheckAndConvertUtils::CheckInteger("ReluGradV2 infer", input_args.size(), kEqual, kReluGradV2InputNum,
|
||||
primitive->name());
|
||||
auto type = ReluGradV2InferType(primitive, input_args);
|
||||
auto shape = ReluGradV2InferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(shape, type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(ReluGradV2, prim::kPrimReluGradV2, ReluGradV2Infer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -13,8 +13,8 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CORE_OPS_RELUGRADV2_H_
|
||||
#define MINDSPORE_CORE_OPS_RELUGRADV2_H_
|
||||
#ifndef MINDSPORE_CORE_OPS_GRAD_RELU_GRAD_V2_H_
|
||||
#define MINDSPORE_CORE_OPS_GRAD_RELU_GRAD_V2_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
@ -24,14 +24,23 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameReLUGradV2 = "ReLUGradV2";
|
||||
class MIND_API ReLUGradV2 : public BaseOperator {
|
||||
constexpr auto kReluGradV2 = "ReluGradV2";
|
||||
/// \brief Grad op of ReLUV2.
|
||||
class MIND_API ReluGradV2 : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(ReLUGradV2);
|
||||
ReLUGradV2() : BaseOperator(kNameReLUGradV2) { InitIOName({"x"}, {"output"}); }
|
||||
MIND_API_BASE_MEMBER(ReluGradV2);
|
||||
/// \brief Constructor.
|
||||
ReluGradV2() : BaseOperator(kReluGradV2) { InitIOName({"gradients", "mask"}, {"output"}); }
|
||||
/// \brief Constructor.
|
||||
explicit ReluGradV2(const std::string k_name) : BaseOperator(k_name) {
|
||||
InitIOName({"gradients", "mask"}, {"output"});
|
||||
}
|
||||
/// \brief Init.
|
||||
void Init() const {}
|
||||
};
|
||||
abstract::AbstractBasePtr ReluGradV2Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_RELUGRADV2_H_
|
||||
#endif // MINDSPORE_CORE_OPS_GRAD_RELU_GRAD_V2_H_
|
||||
|
|
|
@ -1,87 +0,0 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "ops/relu_grad_v2.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/ops/primitive_infer_map.h"
|
||||
#include "mindapi/src/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
constexpr const size_t kReluGradV2InputNum = 2;
|
||||
constexpr const size_t kGradientIndex = 0;
|
||||
constexpr const size_t kMaskIndex = 1;
|
||||
constexpr const size_t kReluGradV2GradientDims = 4;
|
||||
abstract::ShapePtr ReluGradV2InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
auto gradient_shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kGradientIndex]->BuildShape());
|
||||
auto gradient_input_shape = gradient_shape_map[kShape];
|
||||
if (gradient_input_shape.size() != kReluGradV2GradientDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << primitive->name()
|
||||
<< "', The 'gradient' must be a 4-D tensor,but got a " +
|
||||
std::to_string(gradient_input_shape.size()) + "-D tensor";
|
||||
}
|
||||
auto mask_shape_map = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[kMaskIndex]->BuildShape());
|
||||
auto mask_input_shape = mask_shape_map[kShape];
|
||||
if (mask_input_shape.size() < kReluGradV2GradientDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << primitive->name()
|
||||
<< "', The 'mask' dims must be greater than 4,but got " +
|
||||
std::to_string(mask_input_shape.size()) + "-D tensor";
|
||||
}
|
||||
auto gradient_build_shape = input_args[kGradientIndex]->BuildShape();
|
||||
MS_EXCEPTION_IF_NULL(gradient_build_shape);
|
||||
auto gradient_shape = gradient_build_shape->cast<abstract::ShapePtr>();
|
||||
MS_EXCEPTION_IF_NULL(gradient_shape);
|
||||
return gradient_shape;
|
||||
}
|
||||
|
||||
TypePtr ReluGradV2InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
auto prim_name = prim->name();
|
||||
MS_EXCEPTION_IF_NULL(input_args[kGradientIndex]);
|
||||
auto gradient_type = input_args[kGradientIndex]->BuildType();
|
||||
MS_EXCEPTION_IF_NULL(gradient_type);
|
||||
if (!gradient_type->isa<TensorType>()) {
|
||||
MS_EXCEPTION(TypeError) << "The " << prim_name << "'s "
|
||||
<< " input must be tensor type but got " << gradient_type->ToString();
|
||||
}
|
||||
return gradient_type;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
MIND_API_OPERATOR_IMPL(ReluGradV2, BaseOperator);
|
||||
AbstractBasePtr ReluGradV2Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
(void)CheckAndConvertUtils::CheckInteger("ReluGradV2 infer", SizeToLong(input_args.size()), kEqual,
|
||||
kReluGradV2InputNum, primitive->name());
|
||||
auto type = ReluGradV2InferType(primitive, input_args);
|
||||
auto shape = ReluGradV2InferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(shape, type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(ReluGradV2, prim::kPrimReluGradV2, ReluGradV2Infer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -1,47 +0,0 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CORE_OPS_RELU_GRAD_V2_H_
|
||||
#define MINDSPORE_CORE_OPS_RELU_GRAD_V2_H_
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kReluGradV2 = "ReluGradV2";
|
||||
/// \brief Grad op of ReLUV2.
|
||||
class MIND_API ReluGradV2 : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(ReluGradV2);
|
||||
/// \brief Constructor.
|
||||
ReluGradV2() : BaseOperator(kReluGradV2) { InitIOName({"gradients", "mask"}, {"output"}); }
|
||||
/// \brief Constructor.
|
||||
explicit ReluGradV2(const std::string k_name) : BaseOperator(k_name) {
|
||||
InitIOName({"gradients", "mask"}, {"output"});
|
||||
}
|
||||
/// \brief Init.
|
||||
void Init() const {}
|
||||
};
|
||||
abstract::AbstractBasePtr ReluGradV2Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_RELU_GRAD_V2_H_
|
|
@ -36,8 +36,8 @@ constexpr int64_t kRound16 = 16;
|
|||
std::vector<int64_t> ReLUV2GetOutputMaskShape(const PrimitivePtr &prim, const std::vector<int64_t> &input_shape,
|
||||
const std::shared_ptr<Type> &x_dtype) {
|
||||
std::vector<int64_t> mask_shape;
|
||||
if (input_shape.size() != kInputDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim->name() << "', the 'input_x' must be a 4-D tensor, but got a "
|
||||
if (input_shape.size() < kInputDims) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim->name() << "', the dims of 'input_x' must be greater than 4, but got a "
|
||||
<< std::to_string(input_shape.size()) << "-D tensor.";
|
||||
}
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
|
|
Loading…
Reference in New Issue