move deeplabv3 and resnext50 from model_zoo to model_zoo/official/cv

This commit is contained in:
zhouyaqiang 2020-07-22 10:59:25 +08:00
parent b13c7a3d48
commit 4f9b79f5d1
43 changed files with 89 additions and 8 deletions

View File

@ -1,11 +1,16 @@
# Deeplab-V3 Example
# DeeplabV3 Example
## Description
This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
This is an example of training DeepLabV3 with PASCAL VOC 2012 dataset in MindSpore.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the VOC 2012 dataset for training.
- We need to run `./src/remove_gt_colormap.py` to remove the label colormap.
``` bash
python remove_gt_colormap.py --original_gt_folder GT_FOLDER --output_dir OUTPUT_DIR
```
> Notes:
If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
@ -30,7 +35,7 @@ Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckp
```
## Options and Parameters
It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py.
It contains of parameters of DeeplabV3 model and options for training, which is set in file config.py.
### Options:
```

View File

@ -0,0 +1,76 @@
# Copyright 2020 The Huawei Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Removes the color map from segmentation annotations.
Removes the color map from the ground truth segmentation annotations and save
the results to output_dir.
"""
import glob
import argparse
import os.path
import numpy as np
from PIL import Image
def _remove_colormap(filename):
"""Removes the color map from the annotation.
Args:
filename: Ground truth annotation filename.
Returns:
Annotation without color map.
"""
return np.array(Image.open(filename))
def _save_annotation(annotation, filename):
"""Saves the annotation as png file.
Args:
annotation: Segmentation annotation.
filename: Output filename.
"""
pil_image = Image.fromarray(annotation.astype(dtype=np.uint8))
pil_image.save(filename, 'PNG')
def main():
parser = argparse.ArgumentParser(description="Demo of argparse")
parser.add_argument('--original_gt_folder', type=str, default='./VOCdevkit/VOC2012/SegmentationClass',
help='Original ground truth annotations.')
parser.add_argument('--segmentation_format', type=str, default='png',
help='Segmentation format.')
parser.add_argument('--output_dir', type=str, default='./VOCdevkit/VOC2012/SegmentationClassRaw',
help='folder to save modified ground truth annotations.')
args = parser.parse_args()
# Create the output directory if not exists.
if not os.path.isdir(args.output_dir):
os.mkdir(args.output_dir)
annotations = glob.glob(os.path.join(args.original_gt_folder,
'*.' + args.segmentation_format))
for annotation in annotations:
raw_annotation = _remove_colormap(annotation)
filename = os.path.basename(annotation)[:-4]
_save_annotation(raw_annotation,
os.path.join(
args.output_dir,
filename + '.' + args.segmentation_format))
if __name__ == '__main__':
main()

View File

@ -2,12 +2,12 @@
## Description
This is an example of training ResNext50 with ImageNet dataset in Mindspore.
This is an example of training ResNext50 in MindSpore.
## Requirements
- Install [Mindspore](http://www.mindspore.cn/install/en).
- Downlaod the dataset ImageNet2012.
- Downlaod the dataset.
## Structure
@ -91,9 +91,9 @@ sh run_standalone_train.sh DEVICE_ID DATA_PATH
```bash
# distributed training example(8p)
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /ImageNet/train
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /dataset/train
# standalone training example
sh scripts/run_standalone_train.sh 0 /ImageNet_Original/train
sh scripts/run_standalone_train.sh 0 /dataset/train
```
#### Result
@ -123,6 +123,6 @@ sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckp
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
```
acc=78,16%(TOP1)
acc=78.16%(TOP1)
acc=93.88%(TOP5)
```